Discrete Mathematics

The following standards outline the content of a one-year course in Discrete Mathematics. If a onesemester course is desired, the standards with an asterisk (*) would apply. Students enrolled in Discrete Mathematics are assumed to have mastered the concepts outlined in the Standards of Learning for Algebra II.

Discrete mathematics may be described as the study of mathematical properties of sets and systems that have a countable (discrete) number of elements. With the advent of modern technology, discrete (discontinuous) models have become as important as continuous models. In this course, the main focus is problem solving in a discrete setting. Techniques that are not considered in the current traditional courses of algebra, geometry, and calculus will be utilized. As students solve problems, they will analyze and determine whether or not a solution exists (existence problems), investigate how many solutions exist (counting problems), and focus on finding the best solution (optimization problems). Connections will be made to other disciplines. The importance of discrete mathematics has been influenced by computers. Modern technology (graphing calculators and/or computers) will be an integral component of this course.

- *DM.1 The student will model problems, using vertex-edge graphs. The concepts of valence, connectedness, paths, planarity, and directed graphs will be investigated. Adjacency matrices and matrix operations will be used to solve problems (e.g., food chains, number of paths).
- *DM.2 The student will solve problems through investigation and application of circuits, cycles, Euler Paths, Euler Circuits, Hamilton Paths, and Hamilton Circuits. Optimal solutions will be sought using existing algorithms and student-created algorithms.
- *DM.3 The student will apply graphs to conflict-resolution problems, such as map coloring, scheduling, matching, and optimization. Graph coloring and chromatic number will be used.
- *DM.4 The student will apply algorithms, such as Kruskal's, Prim's, or Dijkstra's, relating to trees, networks, and paths. Appropriate technology will be used to determine the number of possible solutions and generate solutions when a feasible number exists.
- *DM.5 The student will use algorithms to schedule tasks in order to determine a minimum project time. The algorithms will include critical path analysis, the list-processing algorithm, and student-created algorithms.
- *DM.6 The student will solve linear programming problems. Appropriate technology will be used to facilitate the use of matrices, graphing techniques, and the Simplex method of determining solutions.
- DM.7 The student will analyze and describe the issue of fair division (e.g., cake cutting, estate division). Algorithms for continuous and discrete cases will be applied.
- DM.8 The student will investigate and describe weighted voting and the results of various election methods. These may include approval and preference voting as well as plurality, majority, run-off, sequential run-off, Borda count, and Condorcet winners.
- DM.9 The student will identify apportionment inconsistencies that apply to issues such as salary caps in sports and allocation of representatives to Congress. Historical and current methods will be compared.
- DM.10 The student will use the recursive process and difference equations with the aid of appropriate technology to generate
 - a) compound interest;
 - b) sequences and series;
 - c) fractals;
 - d) population growth models; and
 - e) the Fibonacci sequence.

- DM.11 The student will describe and apply sorting algorithms and coding algorithms used in sorting, processing, and communicating information. These will include
 - a) bubble sort, merge sort, and network sort; and
 - b) ISBN, UPC, zip, and banking codes.
- DM.12 The student will select, justify, and apply an appropriate technique to solve a logic problem. Techniques will include Venn diagrams, truth tables, and matrices.
- DM.13 The student will apply the formulas of combinatorics in the areas of
 - a) the Fundamental (Basic) Counting Principle;
 - b) knapsack and bin-packing problems;
 - c) permutations and combinations; and
 - d) the pigeonhole principle.