Probability and Statistics

The following standards outline the content of a one-year course in Probability and Statistics. If a onesemester course is desired, the standards with a dagger (${ }^{\dagger}$) would apply. The purpose of the course is to present basic concepts and techniques for collecting and analyzing data, drawing conclusions, and making predictions.

Graphing utilities (calculators, computers, and other technology tools) will be used to assist in teaching and learning. Graphing utilities facilitate visualizing, analyzing, and understanding algebraic and statistical behaviors and provide a powerful tool for solving and verifying solutions.

Descriptive Statistics

PS. $1^{+} \quad$ The student will analyze graphical displays of univariate data, including dotplots, stemplots, boxplots, cumulative frequency graphs, and histograms, to identify and describe patterns and departures from patterns, using central tendency, spread, clusters, gaps, and outliers.

PS. $2^{+} \quad$ The student will analyze numerical characteristics of univariate data sets to describe patterns and departures from patterns, using mean, median, mode, variance, standard deviation, interquartile range, range, and outliers.

PS. $3^{\dagger} \quad$ The student will compare distributions of two or more univariate data sets, numerically and graphically, analyzing center and spread (within group and between group variations), clusters and gaps, shapes, outliers, or other unusual features.

PS. $4^{+} \quad$ The student will analyze scatterplots to identify and describe the relationship between two variables, using shape; strength of relationship; clusters; positive, negative, or no association; outliers; and influential points.

PS. 5 The student will determine and interpret linear correlation, use the method of least squares regression to model the linear relationship between two variables, and use the residual plots to assess linearity.

PS. 6 The student will make logarithmic and power transformations to achieve linearity.
PS. $7^{\dagger} \quad$ The student, using two-way tables and other graphical displays, will analyze categorical data to describe patterns and departures from patterns and to determine marginal frequency and relative frequencies, including conditional frequencies.

Data Collection

PS. $8^{+} \quad$ The student will describe the methods of data collection in a census, sample survey, experiment, and observational study and identify an appropriate method of solution for a given problem setting.

PS. $9^{+} \quad$ The student will plan and conduct a survey. The plan will address sampling techniques and methods to reduce bias.

PS. $10^{+} \quad$ The student will plan and conduct a well-designed experiment. The plan will address control, randomization, replication, blinding, and measurement of experimental error.

Probability

PS. $11^{\dagger} \quad$ The student will identify and describe two or more events as complementary, dependent, independent, and/or mutually exclusive.
PS. $12^{+} \quad$ The student will determine probabilities (relative frequency and theoretical), including conditional probabilities for events that are either dependent or independent, by applying the Law of Large Numbers concept, the addition rule, and the multiplication rule.

PS. 13 The student will develop, interpret, and apply the binomial and geometric probability distributions for discrete random variables, including computing the mean and standard deviation for the binomial and geometric variables.

PS. 14 The student will simulate probability distributions, including binomial and geometric.
PS. 15 The student will identify random variables as independent or dependent and determine the mean and standard deviations for random variables and sums and differences of independent random variables.

PS. $16^{\dagger} \quad$ The student will identify properties of a normal distribution and apply the normal distribution to determine probabilities.

Inferential Statistics

PS. 17 The student, given data from a large sample, will determine and interpret appropriate point estimates and confidence intervals for parameters. The parameters will include proportion and mean, difference between two proportions, difference between two means (independent and paired), and slope of a least-squares regression line.

PS. 18 The student will apply and interpret the logic of an appropriate hypothesis-testing procedure. Tests will include large sample tests for proportion, mean, difference between two proportions, difference between two means (independent and paired); chi-squared tests for goodness of fit, homogeneity of proportions, and independence; and slope of a least-squares regression line.

PS. 19 The student will identify the meaning of sampling distribution with reference to random variable, sampling statistic, and parameter and explain the Central Limit Theorem. This will include sampling distribution of a sample proportion, a sample mean, a difference between two sample proportions, and a difference between two sample means.

PS. 20 The student will identify properties of a t-distribution and apply t-distributions to singlesample and two-sample (independent and matched pairs) t-procedures.

