1 A .4 c

1. $\quad A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$ is a formula which can be used to find the area (A) of a trapezoid in which h represents height, and b_{1} and b_{2} represent the bases of the trapezoid. Using algebraic properties, solve the formula for height (h).
2. The formula for the finding the perimeter of a rectangle can be represented as $2 l+2 w=P$. Where l represents the length and w represents the width. Using algebraic properties, solve the formula for width (w).
3. The formula for finding the surface area of a square-based pyramid can be represented as $S . A .=\frac{1}{2} l p+B$.
Select all formulas that are equivalent to this formula.

$B=S . A .-\frac{1}{2} l p$	$p=\frac{2(S . A .)}{l B}$	$l=2\left(\frac{S . A .-B}{p}\right)$
$B=\frac{2(S . A .)}{l p}$	$\frac{2(S . A .-B)}{l}=p$	$2\left(\frac{S . A .}{p B}\right)=l$

4. Solve the formula $\left(y-y_{1}\right)=m\left(x-x_{1}\right)$ for x.
5. The formula for finding the volume of a cone can be represented as $V=\frac{1}{3} \pi r^{2} h$, where V represents the volume, r represents the radius, and h represents the height. Solve the formula for the height, h.
