Wildfires Anchor Papers

Wildfires burn millions of acres every year. Wildfires burn at a rapid speed and can consume everything in their paths. Fire trucks are used to contain wildfires such as those experienced by people living in California.

The height of a stream of water from the nozzle of a fire hose is modeled by
$h(x)=-0.03 \times 2+x+48$
Where $h(x)$ is the height in feet, of the stream of water x feet from the fire truck.

1. What is the maximum height the water from this nozzle can reach? What is the maximum distance from the firetruck a firefighter can stand and still reach the fire?
2. When the stream of water from the nozzle is 32 feet above ground, what is the horizontal distance the water travels before it hits the ground?
3. If the wildfire is located 48 feet from the firetruck. Based on the original function provided, will the firemen be able to reach the fire? Explain why or why not.
4. Based on the original function, if a wildfire is located 63 feet away from the firetruck, will the firemen able to put out the fire? Explain why or why not.

STUDENT A

The height of a stream of water from the nozzle of a fire hose is modeled by
$\mathrm{h}(\mathrm{x})=-0.03 \mathrm{x}^{2}+x+48 \quad$ (heighbinfeet) $=-003$ (feed from) $+($ ft from) 48
where $h(x)$ is the height in feet, of the stream of water x feet from the fire truck.

1. What is the maximum height the water from this nozzle can reach? What is the maximum distance from the firetruck a firefighter can stand and still reach the fire?

$$
\begin{aligned}
& 56.333=\text { height wo.fit } \\
& 60=m_{2 x} \text { height }
\end{aligned}
$$

2. When the stream of water from the nozzle is 32 feet above ground, how much farther must the water travel before it hits the ground?
(4.4,52) $10,16 . \mathrm{ft}$ because the coorolinges ace $45,14-32$
function provided, will the firemen be able to extinguish the fire? Explain why or why not. Yes it san reach to 48 ft . The max distance is 60 ftjou that en compresses $48 t 1$
3. Based on the original function, if the wildfire is located 63 feet away from the firetruck, will the firemen be able to extinguish the fire? Explain why or why not. if is to for awry for the nozzle to ceach. The max disbanu is 6 of b

Wildfires Anchor Papers

STUDENT B

The height of a stream of water from the nozzle of a fire hose is modeled by weight $8 x$ tromuch $h(\bar{x})=-0.03 x^{2}+x+4 x+48$

where $h(x)$ is the height in feet, of the stream of water x feet from the fire truck.

1. What is the maximum height the water from this nozzle can reach? What is the maximum distance from the firetruck a firefighter can stand and still reach the fire?

$$
\begin{gathered}
h(x)=56.3 \mathrm{ft} \\
x=60 \mathrm{ft}
\end{gathered}
$$

acne height
2. When the stream of water from the nozzle is 32 feet above ground, how much farther must the water travel before it hits the ground? (0) Un $=60$

3. ${ }^{1 f}$ If the wildfire is located 48 feet from the firetruck. Based on the original function provided, will the firemen be able to extinguish the fire? Explain why or why not. yes because the max distance is 60 ft
4. Based on the original function, if the wildfire is located 63 feet away from the firetruck, will the firemen be able to extinguish the fire? Explain why or why not. No because the max distance the nozzle can reach is 60 ft

Wildfires Anchor Papers

STUDENT C

The height of a stream of water from the nozzle of a fire hose is modeled by
$h(\mathrm{x})=-0.03 x^{2}+x+48$
where $h(x)$ is the height in feet, of the stream of water x feet from the fire truck.

1. What is the maximum height the water from this nozzle can reach? What is the maximum distance from the firetruck a firefighter can stand and still reach the fire?

2. When the stream of water from the nozzle is 32 feet above ground, how much farther must the water travel before it hits the ground? $-0.03 x^{2}+x+32$

3. If the wildfire is located 48 feet from the firetruck. Based on the original function provided, will the firemen be able to extinguish the fire? Explain why or why not. I think it wont touch the fire b/c I got 56
the water
 truck is

4. Based on the original function, if the wildfire is located 63 feet away from the firetruck, will the firemen be able to extinguish the fire? Explain why or why not. le c bile $56+t$ is loser to $63 / 7$ momirig
it sAssier to hench the fila.

Wildfires Anchor Papers

STUDENT D

The height of a stream of water from the nozzle of a fire hose is modeled by y height
$h(x)=-0.03 x^{2}+x+48 \quad \mathrm{x}=$ Length from truck where $h(x)$ is the height in feet, of the stream of water x feet from the fire truck.

1. What is the maximum height the water from this nozzle can reach? What is the maximum distance from the firetruck a firefighter can stand and still reach the fire?
56.33 ft max height
86.667 ft max distance
2. When the stream of water from the nozzle is 32 feet above ground, how much farther must the water travel before it hits the ground?
$1 \longdiv { 1 4 . 8 5 3 } \mathrm { ft }$
3. If the wildfire is located 48 feet from the firetruck. Based on the original function provided, will the firemen be able to extinguish the fire? Explain why or why not.
Yes because it's within the cong
4. Based on the original function, if the wildfire is located 63 feet away from the firetruck, will the firemen be able to extinguish the fire? Explain why or why not.
No it is not in between the range
