Geometry
 Vocabulary Word Wall Cards

Mathematics vocabulary word wall cards provide a display of mathematics content words and associated visual cues to assist in vocabulary development. The cards should be used as an instructional tool for teachers and then as a reference for all students.

Table of Contents

Reasoning, Lines, and Transformations

Basics of Geometry 1
Basics of Geometry 2
Geometry Notation
Logic Notation
Set Notation
Conditional Statement
Converse
Inverse
Contrapositive
Symbolic Representations in Logical Arguments
Conditional Statements and Venn Diagrams
Deductive Reasoning
Inductive Reasoning
Direct Proofs
Properties of Congruence
Law of Detachment
Law of Syllogism
Counterexample
Perpendicular Lines
Parallel Lines
Skew Lines
Transversal
Corresponding Angles
Alternate Interior Angles
Alternate Exterior Angles
Consecutive Interior Angles
Parallel Lines
Midpoint (definition)
Midpoint Formula
Find a Missing Endpoint
Slope Formula

Slope of Lines in Coordinate Plane
Distance Formula
Line Symmetry (Examples)
Point Symmetry (Examples)
Rotation (Origin)
Reflection
Translation
Dilation
Perpendicular Bisector
Constructions:

- A line segment congruent to a given line segment
- Perpendicular bisector of a line segment
- A perpendicular to a given line from a point not on the line
- A perpendicular to a given line at a point on the line
- A bisector of an angle
- An angle congruent to a given angle
- A line parallel to a given line through a point not on the given line
- An equilateral triangle inscribed in a circle
- A square inscribed in a circle
- A regular hexagon inscribed in a circle

Triangles

Classifying Triangles by Sides Classifying Triangles by Angles
Triangle Sum Theorem
Exterior Angle Theorem
Pythagorean Theorem
Angle and Sides Relationships
Triangle Inequality Theorem

Congruent Triangles	Isosceles Trapezoid
SSS Triangle Congruence Postulate	Circle
SAS Triangle Congruence Postulate	Circles - Inscribed
HL Right Triangle Congruence	Circle Equation
ASA Triangle Congruence Postulate	Lines and Circles
AAS Triangle Congruence Theorem	Secant
Similar Polygons	Tangent
Similar Polygons and Proportions	Central Angle
AA Triangle Similarity Postulate	Measuring Arcs
SAS Triangle Similarity Theorem	Arc Length
SSS Triangle Similarity Theorem	Secants and Tangents
Altitude of a Triangle	Inscribed Angle
Median of a Triangle	Area of a Sector
Concurrency of Medians of a Triangle	Inscribed Angle Theorem 1
$30^{\circ}-60^{\circ}-90^{\circ}$ Triangle Theorem	Inscribed Angle Theorem 2
$45^{\circ}-45^{\circ}-90^{\circ}$ Triangle Theorem	Inscribed Angle Theorem 3
Trigonometric Ratios	Segments in a Circle
Inverse Trigonometric Ratios	Segments of Secants Theorem
Area of a Triangle	Segment of Secants and Tangents Theorem
Polygons and Circles	Three-Dimensional Figures
Polygon Exterior Angle Sum Theorem	Cone
Polygon Interior Angle Sum Theorem	Cylinder
Regular Polygon	Polyhedron
Properties of Parallelograms	Similar Solids Theorem
Rectangle	Sphere
Rhombus	Hemisphere
Square	Pyramid
Trapezoid	

Basics of Geometry 1

Point - A point has no dimension.

 It is a location on a plane. It is represented by a dot.point P

Line - A line has one dimension. It is an

 infinite set of points represented by a line with two arrowheads that extend without end.

Plane - A plane has two dimensions extending without end. It is often represented by a parallelogram.
plane ABC or plane N

Basics of Geometry 2

Line segment - A line segment consists of two endpoints and all the points between them.

$\overline{\mathrm{AB}}$ or $\overline{\mathrm{BA}}$

Ray - A ray has one endpoint and extends without end in one direction.

Note: Name the endpoint first. $\overrightarrow{B C}$ and $\overrightarrow{C B}$ are different rays.

Geometry Notation

 Symbols used to represent statements or operations in geometry.| $\overrightarrow{\mathrm{BC}}$ | segment BC |
| :---: | :--- |
| $\overrightarrow{\mathrm{BC}}$ | ray BC |
| $\overleftrightarrow{\mathrm{BC}}$ | line BC |
| BC | length of BC |
| $\angle \mathrm{ABC}$ | angle ABC |
| $\mathrm{m} \angle \mathrm{ABC}$ | measure of angle ABC |
| $\triangle \mathrm{ABC}$ | triangle ABC |
| $\\|$ | is parallel to |
| \perp | is perpendicular to |
| \cong | is congruent to |
| \sim | is similar to |

Logic Notation

V	or
Λ	and
\rightarrow	read "implies", if... then...
\leftrightarrow	read "if and only if"
iff	read "if and only if"
\sim	not
\therefore	therefore

Set Notation

$\}$	empty set, null set
\varnothing	empty set, null set
$\boldsymbol{x} \boldsymbol{\}}$	read " x such that"
$\boldsymbol{x}:$	read " x such that"
\boldsymbol{U}	union, disjunction, or
\cap	intersection, conjunction, and

Conditional

Statement

a logical argument consisting of a set of premises, hypothesis (p), and conclusion (q)

hypothesis

conclusion
Symbolically:
if p, then $q \quad p \rightarrow q$

Converse

formed by interchanging the hypothesis and conclusion of a conditional statement

Conditional: If an angle is a right angle, then its measure is 90°.

Converse: If an angle measures 90°, then the angle is a right angle.

Symbolically:

if q, then p

Inverse

formed by negating the hypothesis and conclusion of a conditional statement

Conditional: If an angle is a right angle, then its measure is 90°.

Inverse: If an angle is not a right angle, then its measure is not 90°.

Symbolically:
if $\sim p$, then $\sim q$

Contrapositive

formed by interchanging and negating the hypothesis and conclusion of a conditional statement

Conditional: If an angle is a right angle, then its measure is 90°.

Contrapositive: If an angle does not measure 90°, then the angle is not a right angle.

Symbolically:

$$
\text { if } \sim q \text {, then } \sim p
$$

Symbolic

Representations in Logical Arguments

Conditional	if p, then q	$p \rightarrow q$
Converse	if q, then p	$q \rightarrow p$
Inverse	if not p, then not q	$\sim p \rightarrow \sim q$
Contrapositive	if not q, then not p	$\sim^{\sim} \rightarrow \sim \sim$

Conditional

Statements and
 Venn Diagrams

Original Conditional Statement	Converse - Reversing the Clauses
If an animal is a dolphin,	If an animal is a mammal, then then it is a mammal. it is a dolphin.
True!	False! (Counterexample: An elephant is a mammal but is not a dolphin) Contrapositive - Reversing and Negating the Clauses
If an animal is not a dolphin, then it is not a mammal.	If an animal is not a mammal, then it is not a dolphin.
False! (Counterexample: a whate is not a dolohin but is still a mammal)	True!

Deductive

 Reasoning

 Reasoning}
method using logic to draw conclusions based upon definitions, postulates, and theorems

Example of Deductive Reasoning:

Statement A: If a quadrilateral contains only right angles, then it is a rectangle.

Statement B: Quadrilateral P contains only right angles.

Conclusion: Quadrilateral P is a rectangle.

Inductive Reasoning

method of drawing conclusions from a

 limited set of observations
Example:

Given a pattern, determine the next figure (set of dots) using inductive reasoning.

Figure 1

Figure 2
Figure 3
The next figure should look like this:

Figure 4

Direct Proofs

a justification logically valid and based on initial assumptions, definitions, postulates, and theorems

Example: (two-column proof)
Given: $\angle 1 \cong \angle 2$
Prove: $\angle 2 \cong \angle 1$

Statements	Reasons
$\angle 1 \cong \angle 2$	Given
$\mathrm{m} \angle 1=\mathrm{m} \angle 2$	Definition of congruent angles
$\mathrm{m} \angle 2=\mathrm{m} \angle 1$	Symmetric Property of Equality
$\angle 2 \cong \angle 1$	Definition of congruent angles

Example: (paragraph proof)
It is given that $\angle 1 \cong \angle 2$. By the Definition of
congruent angles, $m \angle 1=m \angle 2$. By the Symmetric Property of Equality, $\mathrm{m} \angle 2=\mathrm{m} \angle 1$. By the Definition of congruent angles, $\angle 2 \cong \angle 1$.

Properties of Congruence

Reflexive Property	$\overline{A B} \cong \overline{A B}$
	$\angle A \cong \angle A$
Symmetric Property	If $\overline{A B} \cong \overline{C D}$, then $\overline{C D} \cong \overline{A B}$.
	If $\angle A \cong \angle B$, then $\angle B \cong \angle A$
Transitive Property	If $\overline{A B} \cong \overline{C D}$ and $\overline{C D} \cong \overline{E F}$, then $\overline{A B} \cong \overline{E F} .$
	If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\angle A \cong \angle C .$

Law of Detachment

 deductive reasoning stating that if the hypothesis of a true conditionalstatement is true then the conclusion is also true

Example:
If $m \angle A>90^{\circ}$, then $\angle A$ is an obtuse angle
$\mathrm{m} \angle \mathrm{A}=120^{\circ}$
Therefore, $\angle \mathrm{A}$ is an obtuse angle.
If $p \rightarrow q$ is a true conditional statement and p is true, then q is true.

Law of Syllogism

deductive reasoning that draws a new conclusion from two conditional statements when the conclusion of one is the hypothesis of the other

Example:

1. If a rectangle has four congruent sides, then it is a square.
2. If a polygon is a square,
then it is a regular polygon.
3. If a rectangle has four congruent sides, then it is a regular polygon.

If $p \rightarrow q$ and $q \rightarrow r$ are true conditional statements, then $p \rightarrow r$ is true.

Counterexample

specific case for which a conjecture is false

Example:

Conjecture: "The product of any two numbers is odd."

Counterexample: 2-3=6

One counterexample proves a conjecture false.

Perpendicular Lines

two lines that intersect to form a

 right angle

Line m is perpendicular to line n.

 $m \perp n$
Perpendicular lines have slopes that are negative reciprocals.

Parallel Lines

coplanar lines that do not intersect

$m \| n$
 Line m is parallel to line n.

Parallel lines have the same slope.

Skew Lines

lines that do not intersect and are not coplanar

Transversal

a line that intersects at least two other lines

Line t is a transversal.

Corresponding

Angles

angles in matching positions when a transversal crosses at least two lines

Examples:
 1) $\angle 2$ and $\angle 6$
 3) $\angle 1$ and $\angle 5$
 2) $\angle 3$ and $\angle 7$
 4) $\angle 4$ and $\angle 8$

Alternate Interior

 Angles
angles inside the lines and on opposite

 sides of the transversal

Examples:
 1) $\angle 1$ and $\angle 4$
 2) $\angle 2$ and $\angle 3$

Alternate Exterior

Angles

angles outside the two lines and on opposite sides of the transversal

Examples:

$$
\begin{aligned}
& \text { 1) } \angle 1 \text { and } \angle 4 \\
& \text { 2) } \angle 2 \text { and } \angle 3
\end{aligned}
$$

Consecutive Interior

Angles

angles between the two lines and on the same side of the transversal

Examples:

$$
\begin{aligned}
& \text { 1) } \quad \angle 1 \text { and } \angle 2 \\
& \text { 2) } \quad \angle 3 \text { and } \angle 4
\end{aligned}
$$

Parallel Lines

Line a is parallel to line b when

Corresponding angles $\angle 1 \cong \angle 5, \angle 2 \cong \angle 6$, are congruent $\quad \angle 3 \cong \angle 7, \angle 4 \cong \angle 8$
Alternate interior angles are congruent $\angle 3 \cong \angle 6$

Alternate exterior $\quad \angle 1 \cong \angle 8$ $\angle 4 \cong \angle 5$ angles are congruent
$\angle 2 \cong \angle 7$
Consecutive interior angles are supplementary

$$
\begin{aligned}
& \mathrm{m} \angle 3+\mathrm{m} \angle 5=180^{\circ} \\
& \mathrm{m} \angle 4+\mathrm{m} \angle 6=180^{\circ}
\end{aligned}
$$

Midpoint (Definition)

divides a segment into two congruent segments

Example: M is the midpoint of $\overline{C D}$ $\overline{C M} \cong \overline{M D}$ $C M=M D$

Segment bisector may be a point, ray, line, line segment, or plane that intersects the segment at its midpoint.

Midpoint Formula

given points $\mathrm{A}\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)$
midpoint $\mathrm{M}=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Example:

Find the midpoint, M, of the segment with endpoints $A(4,1)$ and $B(-2,5)$.

$$
M=\left(\frac{4+-2}{2}, \frac{1+5}{2}\right)=\left(\frac{2}{2}, \frac{6}{2}\right)=(1,3)
$$

Find a Missing

Endpoint

given points $\mathrm{A}\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)$
midpoint $\mathrm{M}=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Example:

Find the endpoint $B(x, y)$ if $A(-2,3)$ and $M(3,8)$.

$$
\begin{gathered}
\left(\frac{-2+x}{2}, \frac{3+y}{2}\right)=(3,8) \\
\frac{-2+x}{2}=3 \text { and } \frac{3+y}{2}=8 \\
x=8 \text { and } y=13 \\
\text { B }(8,13)
\end{gathered}
$$

Slope Formula

ratio of vertical change to horizontal change

slope $=m=\frac{\text { change in } y}{\text { change in } x}=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Slopes of Lines in Coordinate Plane

Parallel lines have the same slope.

Perpendicular lines have slopes whose product is -1 .

Vertical lines have undefined slope.

Horizontal lines have
0 slope.

Example:

The slope of line $n=-2$. The slope of line $p=\frac{1}{2}$.

$$
-2 \cdot \frac{1}{2}=-1, \text { therefore, } n \perp p \text {. }
$$

Distance Formula

given points $\mathrm{A}\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)$

$$
\mathrm{AB}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

The distance formula is derived from the application of the Pythagorean Theorem.

Examples of

Line Symmetry

Rotation

(Origin)

Preimage	Image
$A(-3,0)$	$A^{\prime}(0,3)$
$B(-3,3)$	$B^{\prime}(3,3)$
$C(-1,3)$	$C^{\prime}(3,1)$
$D(-1,0)$	$D^{\prime}(0,1)$

Pre-image has been transformed by a
$\underline{90^{\circ}}$ clockwise rotation about the origin.

Reflection

Preimage	Image
$D(1,-2)$	$D^{\prime}(-1,-2)$
$E(3,-2)$	$E^{\prime}(-3,-2)$
$F(3,2)$	$F^{\prime}(-3,2)$

Translation

Preimage	Image
$A(1,2)$	$A^{\prime}(-2,-3)$
$B(3,2)$	$B^{\prime}(0,-3)$
$C(4,3)$	$C^{\prime}(1,-2)$
$D(3,4)$	$D^{\prime}(0,-1)$
$E(1,4)$	$E^{\prime}(-2,-1)$

Dilation

Preimage	Image
$A(0,2)$	$A^{\prime}(0,4)$
$B(2,0)$	$B^{\prime}(4,0)$
$C(0,0)$	$C^{\prime}(0,0)$

Perpendicular Bisector

 a segment, ray, line, or plane that is perpendicular to a segment at its midpoint

Example:

Line s is perpendicular to $\overline{X Y}$.
 M is the midpoint, therefore $\overline{X M} \cong \overline{\mathrm{MY}}$.
 Z lies on line s and is equidistant from X and Y.

Constructions

Traditional constructions involving a compass and straightedge reinforce students' understanding of geometric concepts. Constructions help students visualize Geometry.
There are multiple methods to most geometric constructions. These cards illustrate only one method. Students would benefit from experiences with more than one method, including dynamic geometry software, and should be able to justify each step of geometric constructions.

Construct

segment $C D$ congruent to

Fig. 1 segment $A B$

Fig. 2

Construct

a perpendicular bisector of

Fig. 1

Construct

a perpendicular to a line from point P not on the line

Construct

a perpendicular to a line from point P on the line

Fig. 2

Fig. 4

Construct

a bisector of $\angle A$

Fig. 1

Fig. 2

Fig. 3
Fig. 4

Construct

Fig. 1

Fig. 3
Fig. 4

Construct

line n parallel to line m through

 point P not on the line

Fig. 4

Construct

an equilateral triangle inscribed

Fig. 1

Fig. 2

Fig. 3

Construct

a square inscribed in a circle

Fig. 2
Fig. 1
Draw a diameter.

Fig. 3

Fig. 4

Construct

a regular hexagon inscribed
in a circle

Fig. 1

Fig. 2

Fig. 3

Fig. 4
Mathematics Vocabulary - Card 51

Classifying Triangles by Sides

Scalene	Isosceles	Equilateral
No congruent sides	At least 2 congruent sides	3 congruent sides
No congruent angles	2 or 3 congruent angles	3 congruent angles

All equilateral triangles are isosceles.

Classifying Triangles
 by Angles

Acute	Right	Obtuse	Equiangular
3 acute angles	1 right angle	1 abtuse angle	3 congruent angles
3 angles, each less than 90°	1 angle equals 90°	1 angle greater than 90°	3 angles, each measures 60°

Triangle Sum

Theorem

measures of the interior angles of a triangle $=180^{\circ}$

$$
\mathrm{m} \angle \mathrm{~A}+\mathrm{m} \angle \mathrm{~B}+\mathrm{m} \angle \mathrm{C}=180^{\circ}
$$

Exterior Angle

Theorem

Exterior angle, $m \angle 1$, is equal to the sum of the measures of the two nonadjacent interior angles.

$$
\mathrm{m} \angle 1=\mathrm{m} \angle \mathrm{~B}+\mathrm{m} \angle \mathrm{C}
$$

Pythagorean
 Theorem

hypotenuse

If $\triangle A B C$ is a right triangle, then $a^{2}+b^{2}=c^{2}$.

Conversely, if $a^{2}+b^{2}=c^{2}$, then $\triangle A B C$ is a right triangle.

Angle and Side Relationships

$\angle A$ is the largest angle, therefore $\overline{B C}$ is the longest side.

> $\angle B$ is the smallest angle, therefore $\overline{\mathrm{AC}}$ is the shortest side.

Triangle Inequality
 Theorem

The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

Example:

$$
\begin{array}{rc}
A B+B C>A C & A C+B C>A B \\
8+26>22 & 22+26>8 \\
A B+A C>B C \\
8+22>26
\end{array}
$$

Congruent Triangles

Two possible congruence statements:
$\triangle \mathrm{ABC} \cong \triangle \mathrm{FED}$
$\triangle \mathrm{BCA} \cong \triangle \mathrm{EDF}$
Corresponding Parts of Congruent Figures

$$
\begin{array}{l|l}
\angle \mathrm{A} \cong \angle \mathrm{~F} & \overline{A B} \cong \overline{F E} \\
\angle \mathrm{~B} \cong \angle \mathrm{E} & \overline{B C} \cong \overline{E D} \\
\angle \mathrm{C} \cong \angle \mathrm{D} & \overline{C A} \cong \overline{D F}
\end{array}
$$

SSS Triangle

Congruence

 Postulate

Example:

$$
\begin{aligned}
& \text { If Side } \overline{\mathrm{AB}} \cong \overline{\mathrm{FE}}, \\
& \text { Side } \overline{\mathrm{AC}} \cong \overline{\mathrm{FD}}, \text { and } \\
& \text { Side } \overline{\mathrm{BC}} \cong \overline{\mathrm{ED}}, \\
& \text { then } \triangle \mathrm{ABC} \cong \Delta \mathrm{FED} .
\end{aligned}
$$

Example:

$$
\begin{aligned}
& \text { If Side } \overline{\mathrm{AB}} \cong \overline{\mathrm{DE}}, \\
& \text { Angle } \angle \mathrm{A} \cong \angle \mathrm{D} \text {, and } \\
& \text { Side } \overline{\mathrm{AC}} \cong \overline{\mathrm{DF}} \text {, } \\
& \text { then } \triangle \mathrm{ABC} \cong \triangle \mathrm{DEF} \text {. }
\end{aligned}
$$

HL Right Triangle

Congruence

Example:

If Hypotenuse $\overline{\mathrm{RS}} \cong \overline{X Y}$, and Leg $\overline{\mathrm{ST}} \cong \overline{\mathrm{YZ}}$,
 then $\Delta \mathrm{RST} \cong \Delta \mathrm{XYZ}$.

ASA Triangle

 Congruence

Example:

If Angle $\angle \mathrm{A} \cong \angle \mathrm{D}$,
 Side $\overline{A C} \cong \overline{D F}$, and
 Angle $\angle \mathrm{C} \cong \angle \mathrm{F}$
 then $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$.

AAS Triangle

Congruence

Theorem

Example:

$$
\begin{aligned}
& \text { If Angle } \angle \mathrm{R} \cong \angle \mathrm{X}, \\
& \text { Angle } \angle \mathrm{S} \cong \angle \mathrm{Y} \text {, and } \\
& \text { Side } \overline{\mathrm{ST}} \cong \overline{\mathrm{YZ}} \\
& \text { then } \triangle \mathrm{RST} \cong \triangle \mathrm{XYZ} \text {. }
\end{aligned}
$$

Similar Polygons

ABCD ~ HGFE

Angles	Sides
$\angle \mathrm{A}$ corresponds to $\angle \mathrm{H}$	$\overline{\mathrm{AB}}$ corresponds to $\overline{\mathrm{HG}}$
$\angle \mathrm{B}$ corresponds to $\angle \mathrm{G}$	$\overline{\mathrm{BC}}$ corresponds to $\overline{\mathrm{GF}}$
$\angle \mathrm{C}$ corresponds to $\angle \mathrm{F}$	$\overline{\mathrm{CD}}$ corresponds to $\overline{\mathrm{FE}}$
$\angle \mathrm{D}$ corresponds to $\angle \mathrm{E}$	$\overline{\mathrm{DA}}$ corresponds to $\overline{\mathrm{EH}}$

Corresponding angles are congruent. Corresponding sides are proportional.

Similar Polygons

 and Proportions

Corresponding vertices are listed in the same order.
Example: $\quad \triangle \mathrm{ABC} \sim \Delta \mathrm{HGF}$

$$
\begin{aligned}
\frac{A B}{H G} & =\frac{B C}{G F} \\
\frac{12}{x} & =\frac{6}{4}
\end{aligned}
$$

The perimeters of the polygons are also proportional.

AA Triangle

Similarity Postulate

Example:

> If Angle $\angle \mathrm{R} \cong \angle \mathrm{X}$ and Angle $\angle \mathrm{S} \cong \angle \mathrm{Y}$,
then $\Delta \mathrm{RST} \sim \Delta \mathrm{XYZ}$.

SAS Triangle

Similarity Theorem

Example:

$$
\begin{aligned}
\text { If } \angle \mathrm{A} & \cong \angle \mathrm{D} \text { and } \\
\frac{A B}{D E} & =\frac{A C}{D F} \\
\text { then } \triangle \mathrm{ABC} & \sim \triangle \mathrm{DEF} .
\end{aligned}
$$

SSS Triangle

Similarity Theorem

Example:

$$
\text { If } \frac{R T}{X Z}=\frac{R S}{X Y}=\frac{S T}{Y Z}
$$

then $\Delta R S T \sim \Delta X Y Z$.

Altitude of a Triangle

a segment from a vertex perpendicular

 to the line containing the opposite side

Every triangle has 3 altitudes.

Median of a Triangle

A line segment from a vertex to the midpoint of the opposite side

D is the midpoint of $\overline{A B}$; therefore, $\overline{C D}$ is a median of $\triangle A B C$.

 Every triangle has 3 medians.
Concurrency of
 Medians of a
 Triangle

Medians of $\triangle A B C$ intersect at P (centroid) and

$$
A P=\frac{2}{3} A F, \quad C P=\frac{2}{3} C E, \quad B P=\frac{2}{3} B D .
$$

$30^{\circ}-60^{\circ}-90^{\circ}$ Triangle

Theorem

Given: \quad short leg $=x$

Using equilateral triangle,
hypotenuse $=2 \cdot x$
Applying the Pythagorean Theorem, longer leg $=x \cdot \sqrt{3}$

$45^{\circ}-45^{\circ}-90^{\circ}$ Triangle

Theorem

Given: leg $=x$,

 then applying the Pythagorean Theorem; hypotenuse ${ }^{2}=x^{2}+x^{2}$ hypotenuse $=x \sqrt{2}$
Trigonometric

Ratios

$\sin A=\frac{\text { side opposite } \angle A}{\text { hypotenuse }}=\frac{a}{c}$
$\cos \mathrm{A}=\frac{\text { side adjacent } \angle \mathrm{A}}{\text { hypotenuse }}=\frac{b}{c}$
$\tan \mathrm{A}=\frac{\text { side opposite } \angle \mathrm{A}}{\text { side adjacent to } \angle \mathrm{A}}=\frac{a}{b}$

$$
\begin{aligned}
& \text { Inverse } \\
& \text { Trigonometric } \\
& \text { Ratios }
\end{aligned}
$$

Definition	Example
If $\tan A=x$, then $\tan ^{-1} x=m \angle A$.	$\tan ^{-1} \frac{a}{b}=m \angle A$
If $\sin A=y$, then $\sin ^{-1} y=m \angle A$.	$\sin ^{-1} \frac{a}{c}=m \angle A$
If $\cos A=z$, then $\cos ^{-1} z=m \angle A$.	$\cos ^{-1} \frac{b}{c}=m \angle A$

Area of a Triangle

$$
\begin{gathered}
\sin \mathrm{C}=\frac{h}{a} \\
h=a \cdot \sin \mathrm{C}
\end{gathered}
$$

$$
\begin{gathered}
A=\frac{1}{2} b h \text { (area of a triangle formula) } \\
\text { By substitution, } \mathrm{A}=\frac{1}{2} b(a \cdot \sin \mathrm{C}) \\
\text { A }=\frac{1}{2} a b \cdot \sin \mathrm{C}
\end{gathered}
$$

Polygon Exterior
 Angle Sum Theorem

The sum of the measures of the exterior angles of a convex polygon is 360°.

Example:
$m \angle 1+m \angle 2+m \angle 3+m \angle 4+m \angle 5=360^{\circ}$

Polygon Interior
 Angle Sum Theorem

The sum of the measures of the interior angles of a convex n-gon is $(n-2) \cdot 180^{\circ}$.

$$
\mathrm{S}=\mathrm{m} \angle 1+\mathrm{m} \angle 2+\ldots+\mathrm{m} \angle n=(n-2) \cdot 180^{\circ}
$$

Example:

$$
\begin{aligned}
& \text { If } n=5 \text {, then } S=(5-2) \cdot 180^{\circ} \\
& S=3 \cdot 180^{\circ}=540^{\circ}
\end{aligned}
$$

Regular Polygon

a convex polygon that is both equiangular and equilateral

Equilateral Triangle Each angle measures 60°.

Square

Each angle measures 90°.

Regular Pentagon

Each angle measures 108°.

Regular Hexagon Each angle measures 120°.

Regular Octagon

Each angle measures 135°.

Properties of Parallelograms

- Opposite sides are parallel.
- Opposite sides are congruent.
- Opposite angles are congruent.
- Consecutive angles are supplementary.
- The diagonals bisect each other.

Rectangle

A parallelogram with four right angles

- Diagonals are congruent.
- Diagonals bisect each other.

Rhombus

A parallelogram with four congruent

 sides

- Diagonals are perpendicular.
- Each diagonal bisects a pair of opposite angles.

Square

A parallelogram and a rectangle with four congruent sides

- Diagonals are perpendicular. - Every square is a rhombus.

Trapezoid

A quadrilateral with exactly one pair of parallel sides

- Two pairs of supplementary angles
- Median joins the midpoints of the nonparallel sides (legs)
- Length of median is half the sum of the lengths of the parallel sides (bases)

Isosceles

Trapezoid

A quadrilateral where the two base angles are equal and therefore the sides opposite the base angles are also equal

- Legs are congruent
- Diagonals are congruent

Circle

all points in a plane equidistant from a given point called the center

- Point O is the center.
- $\overline{\mathrm{MN}}$ passes through the center O and therefore, $\overline{\mathrm{MN}}$ is a diameter.
- $\overline{\mathrm{OP}}, \overline{\mathrm{OM}}$, and $\overline{\mathrm{ON}}$ are radii and $\overline{O P} \cong \overline{O M} \cong \overline{O N}$.
- $\overline{\mathrm{RS}}$ and $\overline{\mathrm{MN}}$ are chords.

Circles

A circle is considered "inscribed" if it is tangent to each side of the polygon.

Circle Equation

$$
x^{2}+y^{2}=r^{2}
$$

circle with radius r and center at the origin

standard equation of a circle
 $(x-h)^{2}+(y-k)^{2}=r^{2}$
 with center (h, k) and radius r

Lines and Circles

- Secant $(\overleftrightarrow{A B})$ - a line that intersects a circle in two points.
- Tangent $(\overleftrightarrow{C D})$ - a line (or ray or segment) that intersects a circle in exactly one point, the point of tangency, D.

Secant

If two lines intersect in the interior of a circle, then the measure of the angle formed is one-half the sum of the measures of the intercepted arcs.

$$
m \angle 1=\frac{1}{2}\left(x^{\circ}+y^{\circ}\right)
$$

Tangent

A line is tangent to a circle if and only if the line is perpendicular to a radius drawn to the point of tangency.

$\overleftrightarrow{\mathrm{QS}}$ is tangent to circle R at point Q . Radius $\overrightarrow{\mathrm{RQ}} \perp \overleftrightarrow{\mathrm{QS}}$

Tangent

If two segments from the same exterior point are tangent to a circle, then they are congruent.

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are tangent to the circle at points B and C.

 Therefore, $\overline{A B} \cong \overline{A C}$ and $A C=A B$.
Central Angle

an angle whose vertex is the center of the circle

$\angle A C B$ is a central angle of circle C.

Minor arc - corresponding central angle is less than 180° Major arc - corresponding central angle is greater than 180°

MeasuringArcs

Minor arcs	Major arcs	Semicircles
$\mathrm{m} \widehat{\mathrm{AB}}=110^{\circ}$	$\mathrm{m} \widehat{\mathrm{BDA}}=250^{\circ}$	$\mathrm{m} \widehat{\mathrm{ADC}}=180^{\circ}$
$\mathrm{m} \widehat{\mathrm{BC}}=70^{\circ}$	$\mathrm{m} \widehat{\mathrm{BAC}}=290^{\circ}$	$\mathrm{m} \widehat{\mathrm{ABC}}=180^{\circ}$

The measure of the entire circle is 360°. The measure of a minor arc is equal to its central angle.
The measure of a major arc is the difference between 360° and the measure of the related minor arc.

Arc Length

Example:

$$
\begin{aligned}
& \frac{\text { arc length of } \widehat{\mathrm{AB}}}{2 \pi \cdot 4}=\frac{120^{\circ}}{360^{\circ}} \\
& \text { arc length of } \widehat{\mathrm{AB}}=\frac{8}{3} \pi \mathrm{~cm}
\end{aligned}
$$

Secants and

Tangents

Inscribed Angle

angle whose vertex is a point on the circle and whose sides contain chords of the circle

$$
\mathrm{m} \angle \mathrm{BAC}=\frac{1}{2} \mathrm{~m} \widehat{\mathrm{BC}}
$$

Area of a Sector

 region bounded by two radii and their intercepted arc
$\frac{\text { area of sector }}{\pi \mathrm{r}^{2}}=\frac{\text { measure of intercepted arc }}{360^{\circ}}$
Example:

$$
\begin{aligned}
& \frac{\text { area of sector } A C B}{\pi \cdot 4^{2}}=\frac{120^{\circ}}{360^{\circ}} \\
& \text { area of sector } A C B=\frac{16}{3} \pi \mathrm{~cm}
\end{aligned}
$$

Inscribed Angle

 Theorem 1

If two inscribed angles of a circle intercept the same arc, then the angles are congruent.
$\angle B D C \cong \angle B A C$

Inscribed Angle

Theorem 2

$\mathrm{m} \angle \mathrm{BAC}=90^{\circ}$ if and only if $\overline{\mathrm{BC}}$ is a diameter of the circle.

Inscribed Angle

Theorem 3

$\mathrm{M}, \mathrm{A}, \mathrm{T}$, and H lie on circle J if and only if $\mathrm{m} \angle \mathrm{A}+\mathrm{m} \angle \mathrm{H}=180^{\circ}$ and $\mathrm{m} \angle \mathrm{T}+\mathrm{m} \angle \mathrm{M}=180^{\circ}$. (opposite angles are supplementary)

Segments in a

Circle

If two chords intersect in a circle, then $a \cdot b=c \cdot d$.

Example:

$$
\begin{aligned}
12(6) & =9 x \\
72 & =9 x \\
8 & =x
\end{aligned}
$$

Segments of

Secants Theorem

$$
A B \cdot A C=A D \cdot A E
$$

Example:

$$
\begin{gathered}
6(6+x)=9(9+16) \\
36+6 x=225 \\
x=31.5
\end{gathered}
$$

Segments of Secants and Tangents Theorem

Example:

$$
\begin{aligned}
25^{2} & =20(20+x) \\
625 & =400+20 x \\
x & =11.25
\end{aligned}
$$

Cone

solid that has one circular base, an apex, and a lateral surface

Cylinder

solid figure with two congruent circular bases that lie in parallel planes

$$
V=\pi r^{2} h
$$

L.A. (lateral surface area) $=2 \pi r h$ S.A. (surface area) $=2 \pi r^{2}+2 \pi r h$

Polyhedron

solid that is bounded by polygons, called faces

Similar Solids

Theorem

If two similar solids have a scale factor of a:b, then their corresponding surface areas have a ratio of $\mathbf{a}^{2}: \mathbf{b}^{2}$, and their corresponding volumes have a ratio of $a^{3}: b^{3}$.

cylinder A ~ cylinder B

Example		
scale factor	$a: b$	$3: 2$
ratio of surface areas	$a^{2}: b^{2}$	$9: 4$
ratio of volumes	$a^{3}: b^{3}$	$27: 8$

Sphere

a three-dimensional surface of which all points are equidistant from a fixed point

S.A. (surface area) $=4 \pi r^{2}$

Hemisphere

a solid that is half of a sphere with one flat, circular side

$V=\frac{2}{3} \pi r^{3}$
S.A. (surface area) $=3 \pi r^{2}$

Pyramid

polyhedron with a polygonal base and triangular faces meeting in a common vertex

$$
\begin{gathered}
\qquad \mathrm{V} \text { (volume) }=\frac{1}{3} B h \\
\text { L.A. (lateral surface area) }=\frac{1}{2} l p \\
\text { S.A. (surface area) }=\frac{1}{2} l p+B
\end{gathered}
$$

