Algebra II Vocabulary Word Wall Cards

Mathematics vocabulary word wall cards provide a display of mathematics content words and associated visual cues to assist in vocabulary development. The cards should be used as an instructional tool for teachers and then as a reference for all students.

Table of Contents

Expressions and Operations

Real Numbers

Complex Numbers

Complex Number (examples)

Absolute Value

Order of Operations

Expression

Variable

Coefficient

Term

Scientific Notation

Exponential Form

Negative Exponent

Zero Exponent

Product of Powers Property

Power of a Power Property

Power of a Product Property

Quotient of Powers Property

Power of a Quotient Property

Polynomial

Degree of Polynomial

Leading Coefficient

Add Polynomials (group like terms)

Add Polynomials (align like terms)

Subtract Polynomials (group like terms)

Subtract Polynomials (align like terms)

Multiply Binomials

Multiply Polynomials

Multiply Binomials (model)

Multiply Binomials (graphic organizer)

Multiply Binomials (squaring a binomial)

Multiply Binomials (sum and difference)

Factors of a Monomial

Factoring (greatest common factor)

Factoring (perfect square trinomials)

Factoring (difference of squares)

<u>Difference of Squares (model)</u>

Factoring (sum and difference of cubes)

Factor by Grouping

Divide Polynomials (monomial divisor)

Divide Polynomials (binomial divisor)

Prime Polynomial

Square Root

Cube Root

nth Root

Simplify Radical Expressions

Add and Subtract Radical Expressions

Product Property of Radicals

Quotient Property of Radicals

Equations and Inequalities

Zero Product Property

Solutions or Roots

Zeros

x-Intercepts

Coordinate Plane

Literal Equation

Vertical Line

Horizontal Line

Quadratic Equation (solve by factoring and

graphing)

Quadratic Equation (number of solutions)

Inequality

Graph of an Inequality

Transitive Property for Inequality

Addition/Subtraction Property of Inequality

Multiplication Property of Inequality

Division Property of Inequality

Absolute Value Inequalities

Linear Equation (standard form)

Linear Equation (slope intercept form)

Linear Equation (point-slope form)

Equivalent Forms of a Linear Equation

Slope

Slope Formula

Slopes of Lines

Perpendicular Lines

Parallel Lines

Mathematical Notation

System of Linear Equations (graphing)

System of Linear Equations (substitution)

System of Linear Equations (elimination)

System of Linear Equations (number of solutions)

System of Equations (linear-quadratic)

Graphing Linear Inequalities

System of Linear Inequalities

Dependent and Independent Variable

Dependent and Independent Variable (application)

Graph of a Quadratic Equation

Vertex of a Quadratic Function

Quadratic Formula

Relations and Functions

Relations (definition and examples)

Functions (definition)

Function (example)

Domain

Range

Increasing/Decreasing

Extrema

End Behavior

Function Notation

Parent Functions

- Linear, Quadratic
- Absolute Value, Square Root
- Cubic, Cube Root
- Rational
- Exponential, Logarithmic

Transformations of Parent Functions

- Translation
- Reflection
- Dilation

Linear Function (transformational graphing)

- Translation
- Dilation (m>0)
- Dilation/reflection (m<0)

Quadratic Function (transformational graphing)

- Vertical translation
- Dilation (a>0)
- Dilation/reflection (a<0)
- Horizontal translation

Multiple Representations of Functions

Inverse of a Function

Continuity

Discontinuity (asymptotes)

Discontinuity (removable or point)

Discontinuity (removable or point)

Arithmetic Sequence

Geometric Sequence

Statistics

Direct Variation

Inverse Variation

Joint Variation

Fundamental Counting Principle

Permutation

Permutation (formula)

Combination

Combination (formula)

Statistics Notation

Mean

Median

Mode

Summation

Variance

Standard Deviation (definition)

Standard Deviation (graphic)

z-Score (definition)

z-Score (graphic)

Empirical Rule

Elements within One Standard Deviation of the

Mean (graphic)

<u>Scatterplot</u>

Positive Linear Relationship (Correlation)

Negative Linear Relationship (Correlation)

No Correlation

Curve of Best Fit (linear)

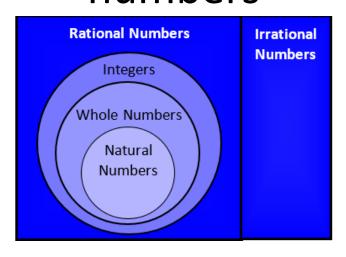
Curve of Best Fit (quadratic)

Curve of Best Fit (exponential)

Outlier Data (graphic)

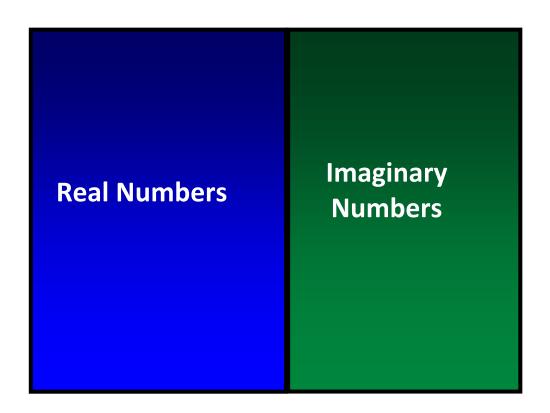
Real Numbers

The set of all rational and irrational numbers



Natural Numbers	{1, 2, 3, 4}
Whole Numbers	{0, 1, 2, 3, 4}
Integers	{3, -2, -1, 0, 1, 2, 3}
Rational Numbers	the set of all numbers that can be written as the ratio of two integers with a non-zero denominator (e.g., $2\frac{3}{5}$, -5, 0.3, $\sqrt{16}$, $\frac{13}{7}$)
Irrational Numbers	the set of all nonrepeating, nonterminating decimals (e.g, $\sqrt{7}$, π ,2322322232223)

Complex Numbers



The set of all real and imaginary numbers

Complex Number

(Examples)

 $a \pm bi$

a and **b** are real numbers and $i = \sqrt{-1}$

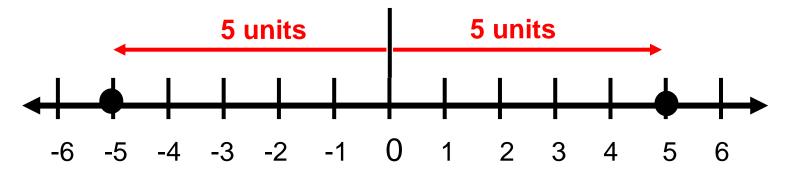
A complex number consists of both real (a) and imaginary (bi) but either part can be 0

Case	Examples
a = 0	-i, 0.01i, ²ⁱ 5
b = 0	$\sqrt{5}$, 4, -12.8
$a \neq 0, b \neq 0$	39 – 6 <i>i,</i> -2 + π <i>i</i>

Absolute Value

$$|5| = 5$$

$$|-5| = 5$$



The distance between a number and zero

Order of Operations

Grouping Symbols	()√ {}
Exponents	a ⁿ
Multiplication	Left to Right
Division	
^ d d:+:	
Addition	Left to Right

Expression

A representation of a quantity that may contain numbers, variables or operation symbols

X

$$-\sqrt[4]{54}$$

$$3^{\frac{1}{2}} + 2m$$

$$3(y+3.9)^4-\frac{8}{9}$$

Variable

$$2^{\vee} + 3$$

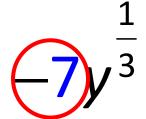
$$9 + log(x) = 2.08$$

$$(d) = 7c + 5$$

$$A = \pi(r)^2$$

Coefficient

$$(-4) + 2 \log x$$



$$\left(\frac{2}{3}\right)ab-\frac{1}{2}$$

$$(\pi)^{r^2}$$

Term

$$3 \log x + 2y - 8$$

3 terms

$$-5x^2-x$$

2 terms

$$\left(\frac{2}{3}\right)^{\alpha}$$

1 term

Scientific Notation

 $a \times 10^{n}$

 $1 \le |a| < 10$ and n is an integer

Standard Notation	Scientific Notation
17,500,000	1.75 x 10 ⁷
-84,623	-8.4623 x 10 ⁴
0.000026	2.6 x 10 ⁻⁶
-0.080029	-8.0029 x 10 ⁻²
$(4.3 \times 10^5) (2 \times 10^{-2})$	$(4.3 \times 2) (10^5 \times 10^{-2}) =$ 8.6 x $10^{5+(-2)} = 8.6 \times 10^3$
$\frac{6.6 \times 10^6}{2 \times 10^3}$	$\frac{6.6}{2} \times \frac{10^6}{10^3} = 3.3 \times 10^{6-3} =$ 3.3×10^3

Exponential Form

$$a^n = a \cdot a \cdot a \cdot a \dots, a \neq 0$$
base

Examples:

$$2 \cdot 2 \cdot 2 = 2^3 = 8$$

n factors

$$n \cdot n \cdot n \cdot n = n^4$$

$$3 \cdot 3 \cdot 3 \cdot x \cdot x = 3^3 x^2 = 27x^2$$

Negative Exponent

$$a^{-n}=\frac{1}{a^n}$$
 , $a\neq 0$

$$4^{-2} = \frac{1}{4^2} = \frac{1}{16}$$

$$\frac{x^4}{y^{-2}} = \frac{x^4}{\frac{1}{y^2}} = \frac{x^4}{1} \cdot \frac{y^2}{1} = x^4 y^2$$

$$(2-a)^{-2} = \frac{1}{(2-a)^2}, a \neq 2$$

Zero Exponent

$$a^0 = 1$$
, $a \neq 0$

$$(-5)^0 = 1$$

$$(3x + 2)^0 = 1$$

$$(x^2y^{-5}z^8)^0 = 1$$

$$4m^0 = 4 \cdot 1 = 4$$

$$\left(\frac{2}{3}\right)^0 = 1$$

Product of Powers Property

$$a^{\mathbf{m}} \cdot a^{\mathbf{n}} = a^{\mathbf{m} + \mathbf{n}}$$

$$x^4 \cdot x^2 = x^{4+2} = x^6$$

$$a^3 \cdot a = a^{3+1} = a^4$$

$$w^{\frac{1}{3}} \cdot w^{\frac{1}{4}} = w^{\frac{1}{3} + \frac{1}{4}} = w^{\frac{7}{12}}$$

Power of a Power Property

$$(a^m)^n = a^{m \cdot n}$$

$$\left(y^{\frac{1}{4}}\right)^{8} = y^{\frac{1}{4} \cdot \frac{8}{1}} = y^{2}$$

$$(g^2)^{-3} = g^{2 \cdot (-3)} = g^{-6} = \frac{1}{g^6}$$

Power of a Product Property

$$(ab)^m = a^m \cdot b^m$$

$$(9a^{4}b^{6})^{\frac{1}{2}} = (9)^{\frac{1}{2}} \cdot (a^{4})^{\frac{1}{2}} (b^{6})^{\frac{1}{2}} =$$

$$3a^{2}b^{3}$$

$$\frac{-1}{(2x)^3} = \frac{-1}{2^3 x^3} = \frac{-1}{8x^3}$$

Quotient of Powers Property

$$\frac{a^{m}}{a^{n}}=a^{m-n}, a\neq 0$$

$$\frac{x^{\frac{3}{5}}}{\frac{1}{x^{\frac{1}{5}}}} = x^{\frac{3}{5} \cdot \frac{1}{5}} = x^{\frac{2}{5}}$$

$$\frac{y^{-3}}{y^{-5}} = y^{-3} - (-5) = y^2$$

$$\frac{a^4}{a^4} = a^{4-4} = a^0 = 1$$

Power of Quotient Property

$$\left(\frac{a}{b}\right)^{m} = \frac{a^{m}}{b^{m}}, b \neq 0$$

$$\left(\frac{y}{3}\right)^4 = \frac{y^4}{3^4} = \frac{y}{81}$$

$$\left(\frac{5}{t}\right)^{-3} = \frac{5^{-3}}{t^{-3}} = \frac{\frac{1}{5^{3}}}{\frac{1}{t^{3}}} = \frac{1}{5^{3}} \cdot \frac{t^{3}}{1} = \frac{t^{3}}{5^{3}} = \frac{t^{3}}{125}$$

Polynomial

Example	Name	Terms
7 6 <i>x</i>	monomial	1 term
$3t - 1$ $12xy^3 + 5x^4y$	binomial	2 terms
$2x^2 + 3x - 7$	trinomial	3 terms

Nonexample	Reason
5 <i>m</i> ⁿ – 8	variable
	exponent
n ⁻³ +9	negative
	exponent

Degree of a Polynomial

The largest exponent or the largest sum of exponents of a term within a polynomial

Polynomial	Degree of Each Term	Degree of Polynomial
-7 <i>m</i> ³ <i>n</i> ⁵	$-7m^3n^5 \rightarrow \text{degree } 8$	8
2x+3	2x → degree 1 3 → degree 0	1
$6a^3 + 3a^2b^3 - 21$	$6a^3$ → degree 3 $3a^2b^3$ → degree 5 -21 → degree 0	5

Leading Coefficient

The coefficient of the first term of a polynomial written in descending order of exponents

$$7a^3 - 2a^2 + 8a - 1$$

$$-3n^3 + 7n^2 - 4n + 10$$

$$16t - 1$$

Add Polynomials

(Group Like Terms – Horizontal Method)

Example:

$$h(g) = 2g^{2} + 6g - 4; k(g) = g^{2} - g$$

$$h(g) + k(g) = (2g^{2} + 6g - 4) + (g^{2} - g)$$

$$= 2g^{2} + 6g - 4 + g^{2} - g$$

(Group like terms and add)

$$= (2g2 + g2) + (6g - g) - 4$$
$$h(q) + k(q) = 3g2 + 5g - 4$$

Add Polynomials

(Align Like Terms – Vertical Method)

Example:

$$h(g) = 2g^3 + 6g^2 - 4$$
; $k(g) = g^3 - g - 3$

$$h(g) + k(g) = (2g^3 + 6g^2 - 4) + (g^3 - g - 3)$$

(Align like terms and add)

$$2g^3 + 6g^2 - 4$$

$$+ g^3 - g - 3$$

$$h(g)+k(g)=3g^3+6g^2-g-7$$

Subtract Polynomials (Group Like Terms -Horizontal Method)

Example:

$$f(x) = 4x^2 + 5$$
; $g(x) = -2x^2 + 4x - 7$
 $f(x) - g(x) = (4x^2 + 5) - (-2x^2 + 4x - 7)$
(Add the inverse)

$$= (4x^2 + 5) + (2x^2 - 4x + 7)$$

$$= 4x^2 + 5 + 2x^2 - 4x + 7$$

(Group like terms and add.)

$$= (4x^2 + 2x^2) - 4x + (5 + 7)$$

$$f(x)-g(x) = 6x^2 - 4x + 12$$

Subtract Polynomials (Align Like Terms -Vertical Method)

Example:

$$f(x) = 4x^2 + 5$$
; $g(x) = -2x^2 + 4x - 7$
 $f(x) - g(x) = (4x^2 + 5) - (-2x^2 + 4x - 7)$

(Align like terms then add the inverse and add the like terms.)

$$4x^{2} + 5 \longrightarrow 4x^{2} + 5$$

$$-(-2x^{2} + 4x - 7) \longrightarrow + 2x^{2} - 4x + 7$$

$$f(x) - g(x) = 6x^{2} - 4x + 12$$

Multiply Binomials

$$(a + b)(c + d) =$$

 $a(c + d) + b(c + d) =$
 $ac + ad + bc + bd$

Example:
$$(x + 3)(x + 2)$$

= $(x + 3)(x + 2)$
= $x(x + 2) + 3(x + 2)$
= $x^2 + 2x + 3x + 6$
= $x^2 + 5x + 6$

Multiply Polynomials

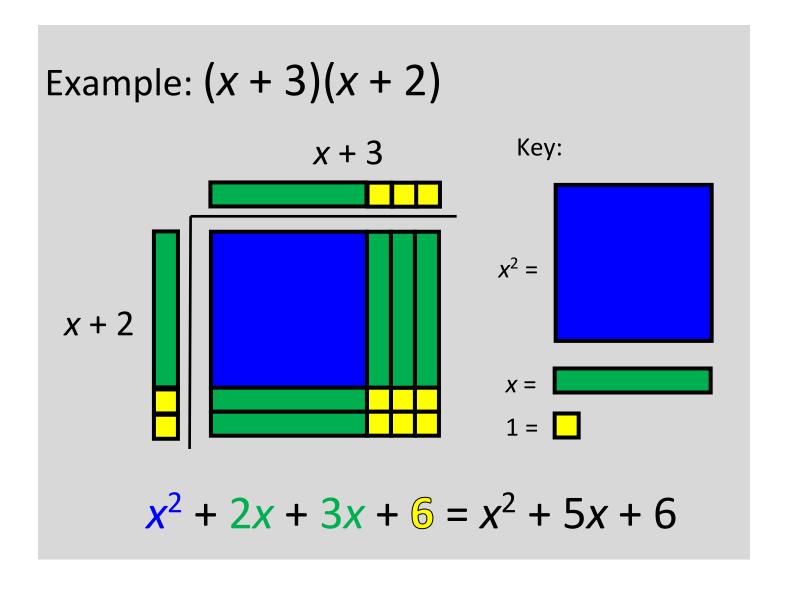
$$(a + b)(d + e + f)$$

$$(a+b)(d+e+b)$$

$$= a(d+e+f) + b(d+e+f)$$

$$= ad + ae + af + bd + be + bf$$

Multiply Binomials (Model)



Multiply Binomials (Graphic Organizer)

Example:
$$(x + 8)(2x - 3)$$

= $(x + 8)(2x + -3)$
 $2x + -3$
 x
 $2x^{2} - 3x$
 $+$
 8
 $16x$ -24
 $2x^{2} + 16x + -3x + -24 = 2x^{2} + 13x - 24$

Multiply Binomials (Squaring a Binomial)

$$(a + b)^2 = a^2 + 2ab + b^2$$

 $(a - b)^2 = a^2 - 2ab + b^2$

$$(3m + n)^2 = 9m^2 + 2(3m)(n) + n^2$$

= $9m^2 + 6mn + n^2$

$$(y-5)^2 = y^2 - 2(5)(y) + 25$$

= $y^2 - 10y + 25$

Multiply Binomials (Sum and Difference)

$$(a + b)(a - b) = a^2 - b^2$$

$$(2b + 5)(2b - 5) = 4b^2 - 25$$

$$(7-w)(7+w) = 49-w^2$$

Factors of a Monomial

The number(s) and/or variable(s) that are multiplied together to form a monomial

Examples:	Factors	Expanded Form
5 <i>b</i> ²	5· <i>b</i> ²	5· <i>b</i> · <i>b</i>
$6x^2y$	$6\cdot x^2\cdot y$	2·3· <i>x</i> · <i>x</i> · <i>y</i>
$\frac{-5p^2q^3}{2}$	$\frac{-5}{2} \cdot p^2 \cdot q^3$	$\frac{1}{2} \cdot (-5) \cdot p \cdot p \cdot q \cdot q \cdot q$

Factoring (Greatest Common Factor)

Find the greatest common factor (GCF) of all terms of the polynomial and then apply the distributive property.

Example:
$$20a^4 + 8a$$

$$2 \cdot 2 \cdot 5 \cdot a \cdot a \cdot a \cdot a + 2 \cdot 2 \cdot 2 \cdot a$$

common factors

$$GCF = 2 \cdot 2 \cdot a = 4a$$

$$20a^4 + 8a = 4a(5a^3 + 2)$$

Factoring

(Perfect Square Trinomials)

$$a^{2} + 2ab + b^{2} = (a + b)^{2}$$

 $a^{2} - 2ab + b^{2} = (a - b)^{2}$

$$x^{2} + 6x + 9 = x^{2} + 2 \cdot 3 \cdot x + 3^{2}$$

= $(x + 3)^{2}$

$$4x^{2} - 20x + 25 = (2x)^{2} - 2 \cdot 2x \cdot 5 + 5^{2}$$
$$= (2x - 5)^{2}$$

Factoring (Difference of Squares)

$$a^2 - b^2 = (a + b)(a - b)$$

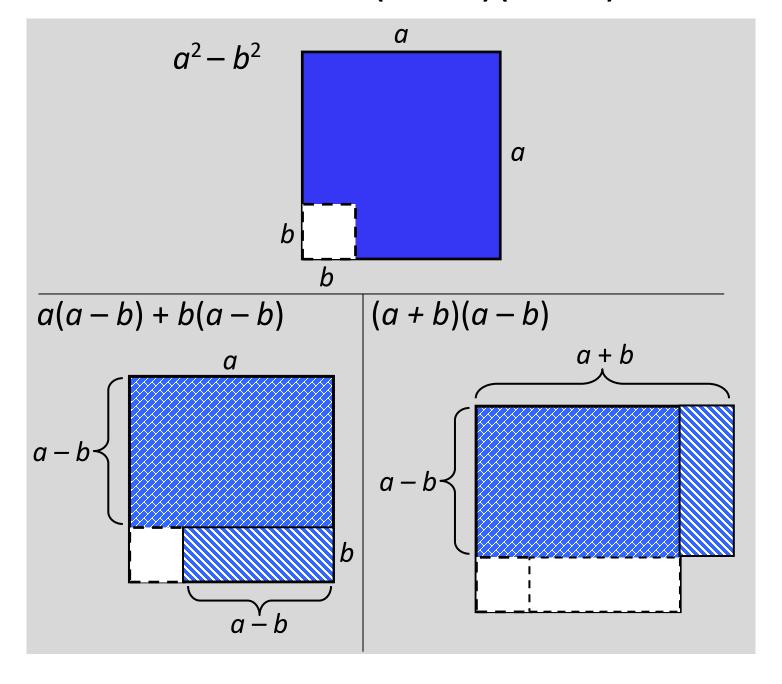
$$x^2 - 49 = x^2 - 7^2 = (x + 7)(x - 7)$$

$$4-n^2=2^2-n^2=(2-n)(2+n)$$

$$9x^{2} - 25y^{2} = (3x)^{2} - (5y)^{2}$$
$$= (3x + 5y)(3x - 5y)$$

Difference of Squares (Model)

$$a^2 - b^2 = (a + b)(a - b)$$



Factoring

(Sum and Difference of Cubes)

$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

 $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

$$27y^3 + 1 = (3y)^3 + (1)^3$$
$$= (3y + 1)(9y^2 - 3y + 1)$$

$$x^3 - 64 = x^3 - 4^3 = (x - 4)(x^2 + 4x + 16)$$

Factoring (By Grouping)

For trinomials of the form $ax^2 + bx + c$

Example:
$$3x^2 + 8x + 4$$
 $ac = 3 \cdot 4 = 12$

Find factors of ac that add to equal b
 $12 = 2 \cdot 6 \longrightarrow 2 + 6 = 8$

$$3x^2 + 2x + 6x + 4$$
 $(3x^2 + 2x) + (6x + 4)$

Group factors

 $x(3x + 2) + 2(3x + 2)$

Factor out a common binomial

Divide Polynomials (Monomial Divisor)

Divide each term of the dividend by the monomial divisor

$$f(x) = 12x^{3} - 36x^{2} + 16x; g(x) = 4x$$

$$\frac{f(x)}{g(x)} = (12x^{3} - 36x^{2} + 16x) \div 4x$$

$$= \frac{12x^{3} - 36x^{2} + 16x}{4x}$$

$$= \frac{12x^{3}}{4x} - \frac{36x^{2}}{4x} + \frac{16x}{4x}$$

$$\frac{f(x)}{g(x)} = 3x^{2} - 9x + 4$$

Divide Polynomials (Binomial Divisor)

Factor and simplify

$$f(w) = 7w^{2} + 3w - 4; \ g(w) = w + 1$$

$$\frac{f(w)}{g(w)} = (7w^{2} + 3w - 4) \div (w + 1)$$

$$= \frac{7w^{2} + 3w - 4}{w + 1}$$

$$=\frac{(7w-4)(w+1)}{w+1}$$

$$\frac{f(w)}{g(w)} = 7w - 4$$

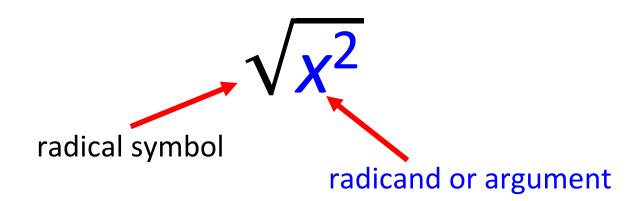
Prime Polynomial

Cannot be factored into a product of lesser degree polynomial factors

Example	
r	
3 <i>t</i> + 9	
$x^2 + 1$	
$5y^2 - 4y + 3$	

Nonexample	Factors
$x^2 - 4$	(x + 2)(x - 2)
$3x^2 - 3x - 6$	3(x+1)(x-2)
x ³	$x \cdot x^2$

Square Root



Simplify square root expressions.

Examples:

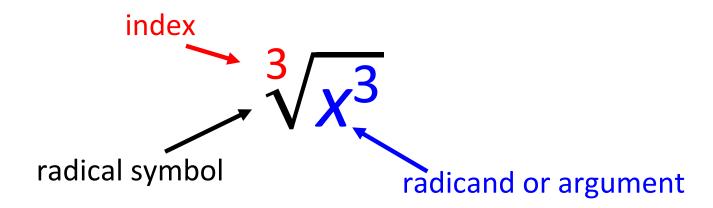
Examples:

$$\sqrt{9x^2} = \sqrt{3^2 \cdot x^2} = \sqrt{(3x)^2} = 3x$$

$$-\sqrt{(x-3)^2} = -(x-3) = -x + 3$$

Squaring a number and taking a square root are inverse operations.

Cube Root



Simplify cube root expressions.

Examples:

$$\sqrt[3]{64} = \sqrt[3]{4^3} = 4$$

$$\sqrt[3]{-27} = \sqrt[3]{(-3)^3} = -3$$

$$\sqrt[3]{x^3} = x$$

Cubing a number and taking a cube root are inverse operations.

nth Root

$$\sqrt[n]{x^m} = \frac{m}{x^n}$$
radical symbol

radicand or argument

$$\sqrt[5]{64} = \sqrt[5]{4^3} = 4^{\frac{3}{5}}$$

$$\sqrt[6]{729x^9y^6} = 3x^{\frac{3}{2}}y$$

Simplify Radical Expressions

Simplify radicals and combine like terms where possible.

$$\frac{1}{2} + \sqrt[3]{-32} - \frac{11}{2} - \sqrt{8}$$

$$= -\frac{10}{2} - 2\sqrt[3]{4} - 2\sqrt{2}$$

$$= -5 - 2\sqrt[3]{4} - 2\sqrt{2}$$

$$\sqrt{18} - 2\sqrt[3]{27} = 2\sqrt{3} - 2(3)$$
$$= 2\sqrt{3} - 6$$

Add and Subtract Radical Expressions

Add or subtract the numerical factors of the like radicals.

$$2\sqrt{a} + 5\sqrt{a}$$
$$= (2+5)\sqrt{a} = 7\sqrt{a}$$

$$6\sqrt[3]{xy} - 4\sqrt[3]{xy} - \sqrt[3]{xy}$$
$$= (6 - 4 - 1)\sqrt[3]{xy} = \sqrt[3]{xy}$$

$$2\sqrt[4]{c} + 7\sqrt{2} - 2\sqrt[4]{c}$$
$$= (2 - 2)\sqrt[4]{c} + 7\sqrt{2} = 7\sqrt{2}$$

Product Property of Radicals

The nth root of a product equals the product of the nth roots.

$$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

 $a \ge 0$ and $b \ge 0$

$$\sqrt{4x} = \sqrt{4} \cdot \sqrt{x} = 2\sqrt{x}$$

$$\sqrt{5a^3} = \sqrt{5} \cdot \sqrt{a^3} = a\sqrt{5a}$$

$$\sqrt[3]{16} = \sqrt[3]{8 \cdot 2} = \sqrt[3]{8} \cdot \sqrt[3]{2} = 2\sqrt[3]{2}$$

Quotient Property of Radicals

The nth root of a quotient equals the quotient of the nth roots of the numerator and denominator.

$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

 $a \ge 0$ and b > 0

$$\sqrt{\frac{5}{y^2}} = \frac{\sqrt{5}}{\sqrt{y^2}} = \frac{\sqrt{5}}{y}, y \neq 0$$

$$\frac{\sqrt{25}}{\sqrt{3}} = \frac{5}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{5\sqrt{3}}{3}$$

Zero Product Property

If ab = 0, then a = 0 or b = 0.

Example:

$$(x + 3)(x - 4) = 0$$

 $(x + 3) = 0 \text{ or } (x - 4) = 0$
 $x = -3 \text{ or } x = 4$

The solutions or roots of the polynomial equation are -3 and 4.

Solutions or Roots

$$x^2 + 2x = 3$$

Solve using the zero product property.

$$x^{2} + 2x - 3 = 0$$

 $(x + 3)(x - 1) = 0$
 $x + 3 = 0$ or $x - 1 = 0$
 $x = -3$ or $x = 1$

The solutions or roots of the polynomial equation are -3 and 1.

Zeros

The zeros of a function f(x) are the values of x where the function is equal to zero.

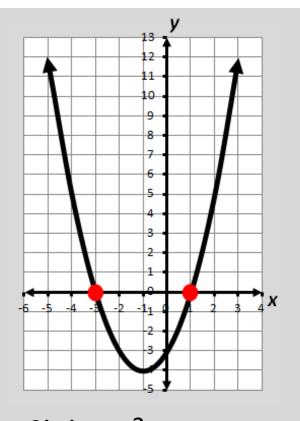
$$f(x) = x^2 + 2x - 3$$

Find $f(x) = 0$.

$$0 = x^{2} + 2x - 3$$

$$0 = (x + 3)(x - 1)$$

$$x = -3 \text{ or } x = 1$$



The zeros of the function $f(x) = x^2 + 2x - 3$ are -3 and 1 and are located at the x-intercepts (-3,0) and (1,0).

The zeros of a function are also the solutions or roots of the related equation

x-Intercepts

The x-intercepts of a graph are located where the graph crosses the x-axis and where f(x) = 0.

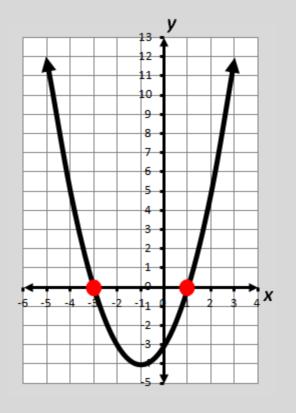
$$f(x) = x^2 + 2x - 3$$

$$0 = (x + 3)(x - 1)$$

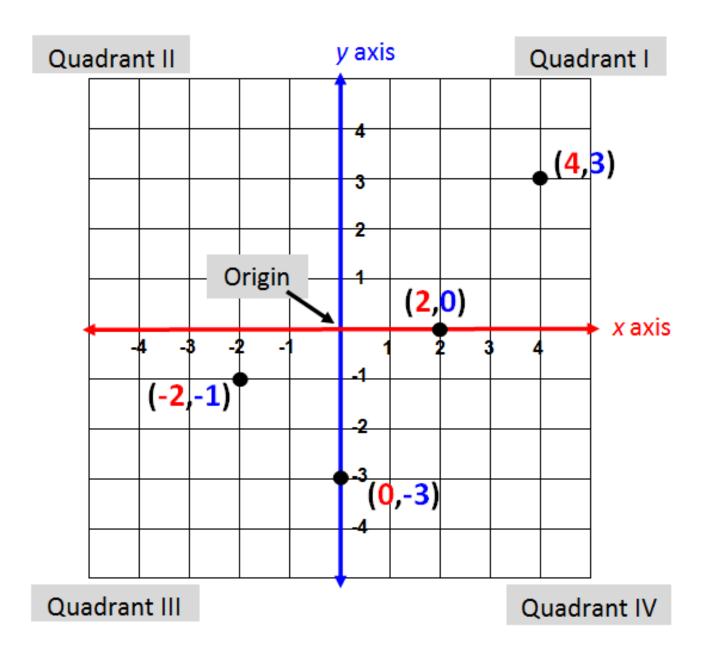
 $0 = x + 3 \text{ or } 0 = x - 1$
 $x = -3 \text{ or } x = 1$

The zeros are -3 and 1. The x-intercepts are:

- -3 or (-3,0)
- 1 or (1,0)



Coordinate Plane



ordered pair (x,y)

Literal Equation

A formula or equation that consists primarily of variables

$$Ax + By = C$$

$$A = \frac{1}{2}bh$$

$$V = lwh$$

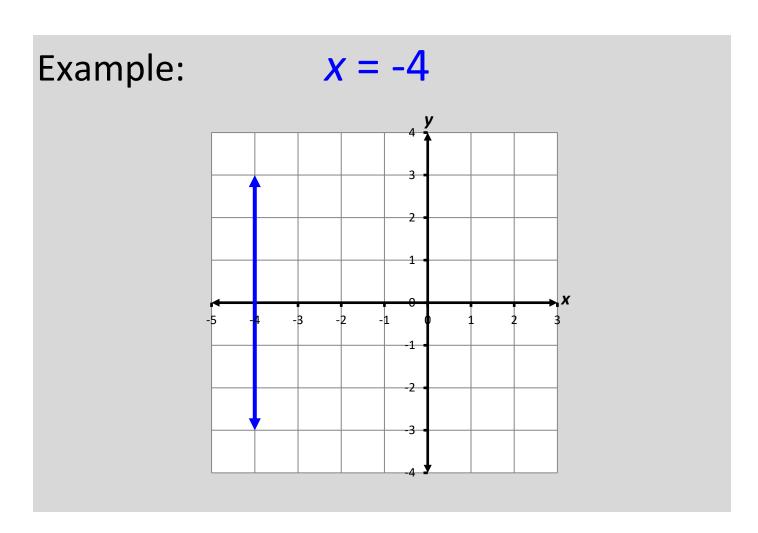
$$F = \frac{9}{5}C + 32$$

$$A = \pi r^2$$

Vertical Line

$$x = a$$

(where a can be any real number)

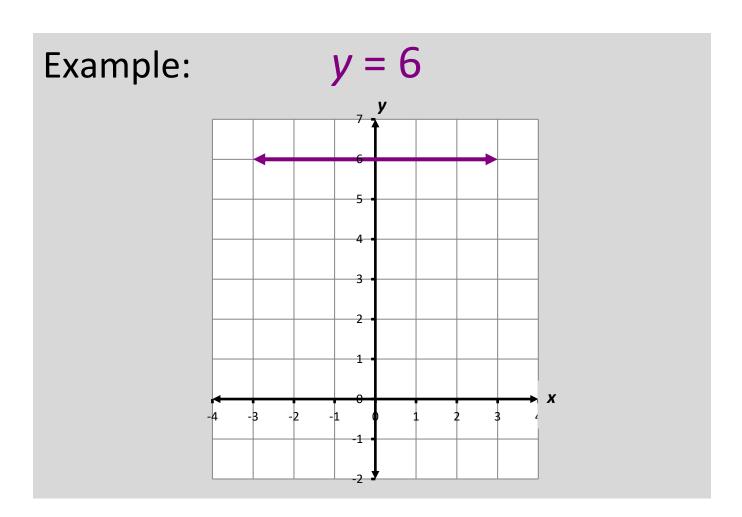


Vertical lines have undefined slope.

Horizontal Line

$$y = c$$

(where c can be any real number)



Horizontal lines have a slope of 0.

Quadratic Equation

$$ax^2 + bx + c = 0$$

$$a \neq 0$$

Example: $x^2 - 6x + 8 = 0$

Solve by factoring Solve by graphing Graph the related function $f(x) = x^2 - 6x + 8$. (x-2)(x-4) = 0 (x-2) = 0 or (x-4) = 0 x = 2 or x = 4

Solutions (roots) to the equation are 2 and 4; the x-coordinates where the function crosses the x-axis.

Quadratic Equation

(Number/Type of Solutions)

$$ax^2 + bx + c = 0$$
, $a \neq 0$

Examples	Graph of the related function	Number and Type of Solutions/Roots
$x^2 - x = 3$	3 y 3 2 1 1 2 3 4 3 4 4	2 distinct Real roots (crosses x-axis twice)
$x^2 + 16 = 8x$	10 y 2	1 distinct Real root with a multiplicity of two (double root) (touches x-axis but
$\frac{1}{2}x^2 - 2x + 3 = 0$	10 - V 9 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	O Real roots; 2 Complex roots

Inequality

An algebraic sentence comparing two quantities

Symbol	Meaning
<	less than
<u>≤</u>	less than or equal to
>	greater than
<u>></u>	greater than or equal to
≠	not equal to

$$-10.5 > -9.9 - 1.2$$

 $8 > 3t + 2$
 $x - 5y \ge -12$
 $r \ne 3$

Graph of an Inequality

Symbol	Examples	Graph
<;>	<i>x</i> < 3	-1 0 1 2 3 4 5
≤;≥	-3 ≥ <i>y</i>	-6 -5 -4 -3 -2 -1 0
≠	<i>t</i> ≠ -2	-6 -5 -4 -3 -2 -1 0

Transitive Property of Inequality

If	Then
a < b and $b < c$	a < c
a > b and $b > c$	a > c

Examples:

If 4x < 2y and 2y < 16, then 4x < 16.

If x > y - 1 and y - 1 > 3, then x > 3.

Addition/Subtraction Property of Inequality

If	Then
a > b	a+c>b+c
$a \ge b$	$a+c \ge b+c$
a < b	a + c < b + c
$a \le b$	$a+c \leq b+c$

$$d - 1.9 \ge -8.7$$

 $d - 1.9 + 1.9 \ge -8.7 + 1.9$
 $d \ge -6.8$

Multiplication Property of Inequality

If	Case	Then
a < b	c > 0, positive	ac < bc
a > b	c > 0, positive	ac > bc
a < b	c < 0, negative	ac > bc
a > b	c < 0, negative	ac < bc

Example: If
$$c = -2$$

$$5 > -3$$

$$5(-2) < -3(-2)$$

$$-10 < 6$$

Division Property of Inequality

If	Case	Then
<i>a</i> < b	c > 0, positive	$\frac{a}{c} < \frac{b}{c}$
<i>a</i> > b	c > 0, positive	$\frac{a}{c} > \frac{b}{c}$
<i>a</i> < b	c < 0, negative	$\frac{a}{c} > \frac{b}{c}$
<i>a</i> > b	c < 0, negative	$\frac{a}{c} < \frac{b}{c}$

Example: If
$$c = -4$$

$$-90 \ge -4t$$

$$\frac{-90}{-4} \le \frac{-4t}{-4}$$

$$22.5 \le t$$

Absolute Value Inequalities

Absolute Value Inequality	Equivalent Compound Inequality
x < 5	-5 < x < 5 "and" statement
$ x \ge 7$	$x \le -7$ or $x \ge 7$ "or" statement

Example:
$$|2x-5| \ge 8$$

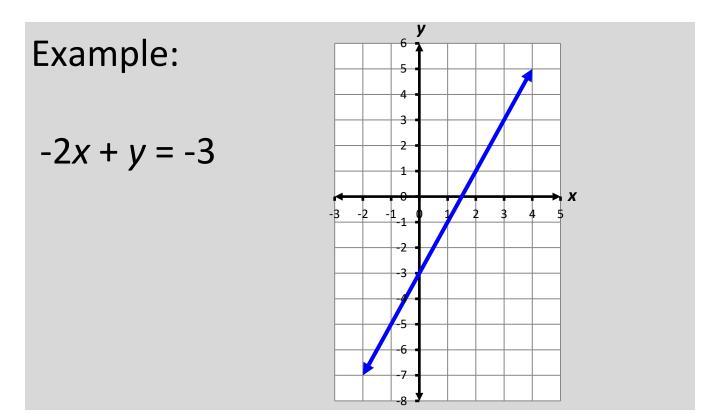
 $2x-5 \le -8 \text{ or } 2x-5 \ge 8$
 $2x \le -3 \text{ or } 2x \ge 13$
 $x \le -\frac{3}{2} \text{ or } x \ge \frac{13}{2}$

Linear Equation

(Standard Form)

$$Ax + By = C$$

(A, B and C are integers; A and B cannot both equal zero)



The graph of the linear equation is a straight line and represents all solutions (x, y) of the equation.

Linear Equation

(Slope-Intercept Form)

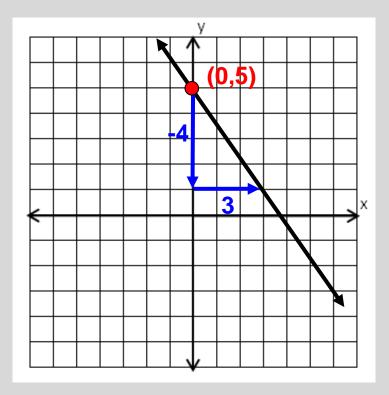
$$y = mx + b$$

(slope is *m* and *y*-intercept is *b*)

Example: $y = \frac{-4}{3}x + 5$

$$m = \frac{-4}{3}$$

$$b = 5$$



Linear Equation

(Point-Slope Form)

$$y-y_1=m(x-x_1)$$

where m is the slope and (x_1,y_1) is the point

Example:

Write an equation for the line that passes through the point (-4,1) and has a slope of 2.

$$y-1 = 2(x-4)$$

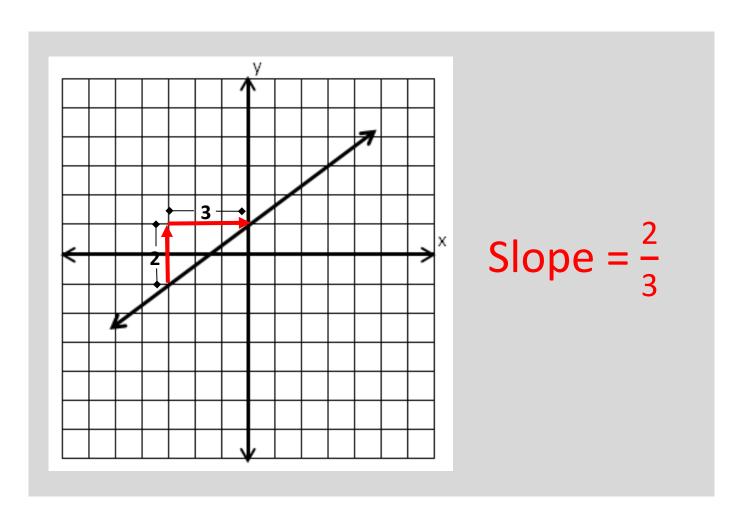
 $y-1 = 2(x+4)$
 $y = 2x + 9$

Equivalent Forms of a Linear Equation

Forms of a Linear Equation	3y = 6 - 4x
Slope-Intercept	$y = -\frac{4}{3}x + 2$
Point-Slope	$y - (-2) = -\frac{4}{3}(x - 3)$
Standard	4x + 3y = 6

Slope

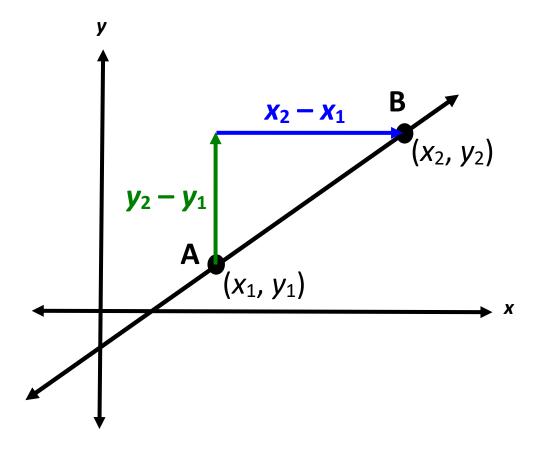
A number that represents the rate of change in *y* for a unit change in *x*



The slope indicates the steepness of a line.

Slope Formula

The ratio of vertical change to horizontal change

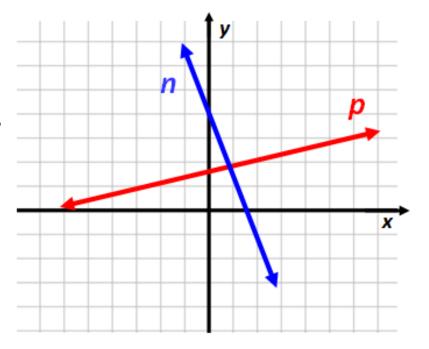


slope =
$$m = \frac{\text{change in } y}{\text{change in } x} = \frac{y_2 - y_1}{x_2 - x_1}$$

Slopes of Lines

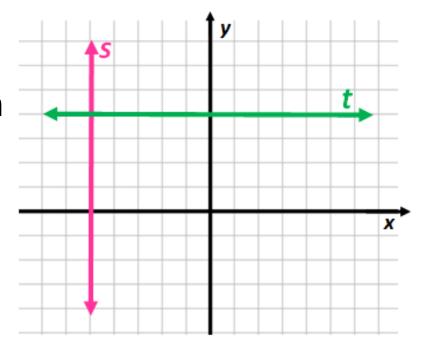
Line **p** has a positive slope.

Line *n*has a negative
slope.



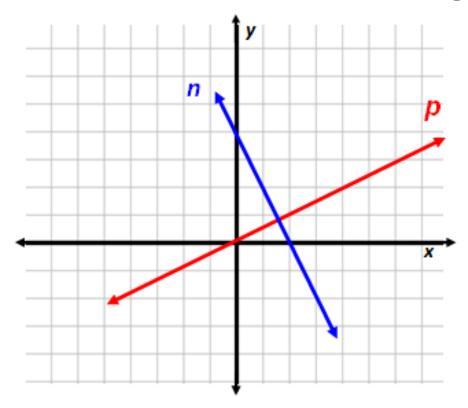
Vertical line s has an undefined slope.

Horizontal line *t* has a zero slope.



Perpendicular Lines

Lines that intersect to form a right angle



Perpendicular lines (not parallel to either of the axes) have slopes whose product is -1.

Example:

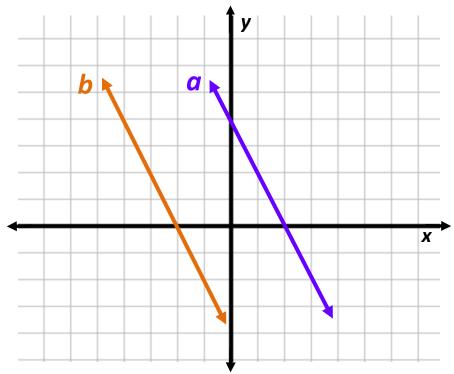
The slope of line n = -2. The slope of line $p = \frac{1}{2}$.

$$-2 \cdot \frac{1}{2} = -1$$
, therefore, *n* is perpendicular to *p*.

Parallel Lines

Lines in the same plane that do not intersect are parallel.

Parallel lines have the same slopes.



Example:

The slope of line a = -2.

The slope of line b = -2.

-2 = -2, therefore, α is parallel to b.

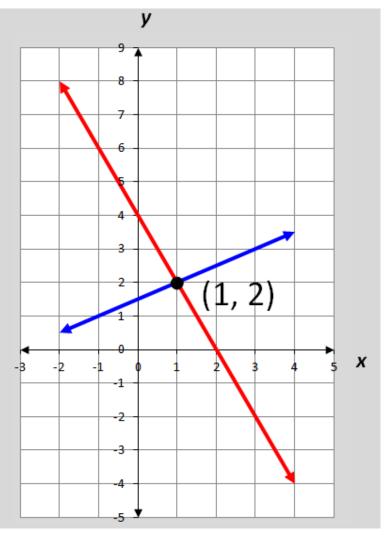
Mathematical Notation

Equation or Inequality	Set Notation	Interval Notation
0 < <i>x</i> ≤ 3	$\{x \mid 0 < x \le 3\}$	(0, 3]
<i>y</i> ≥ -5	{ <i>y</i> : <i>y</i> ≥ -5}	[-5, +∞)
<i>z</i> <-1 or <i>z</i> ≥ 3	$\{z \mid z < -1 \text{ or } z \ge 3\}$	(-∞,-1) ∪ [3, +∞)
x < 5 or x > 5	{x: x ≠ 5}	(-∞, 5) ∪ (5, +∞)
Empty (null) set Ø	{ }	Ø
All Real Numbers \mathbb{R}	$\{x:x\in\mathbb{R}\}$ {All Real Numbers}	$(-\infty,\infty)$

System of Linear Equations (Graphing)

$$\begin{cases} -x + 2y = 3 \\ 2x + y = 4 \end{cases}$$

The solution, (1, 2), is the only ordered pair that satisfies both equations (the point of intersection).



System of Linear Equations (Substitution)

$$\begin{cases} x + 4y = 17 \\ y = x - 2 \end{cases}$$

Substitute x - 2 for y in the first equation.

$$x + 4(x - 2) = 17$$
$$x = 5$$

Now substitute 5 for x in the second equation.

$$y = 5 - 2$$
$$y = 3$$

The solution to the linear system is (5, 3), the ordered pair that satisfies both equations.

System of Linear Equations (Elimination)

$$\begin{cases} -5x - 6y = 8 \\ 5x + 2y = 4 \end{cases}$$

Add or subtract the equations to eliminate one variable.

$$-5x - 6y = 8$$

$$+ 5x + 2y = 4$$

$$-4y = 12$$

$$y = -3$$

Now substitute -3 for y in either original equation to find the value of x, the eliminated variable.

$$-5x - 6(-3) = 8$$

 $x = 2$

The solution to the linear system is (2,-3), the ordered pair that satisfies both equations.

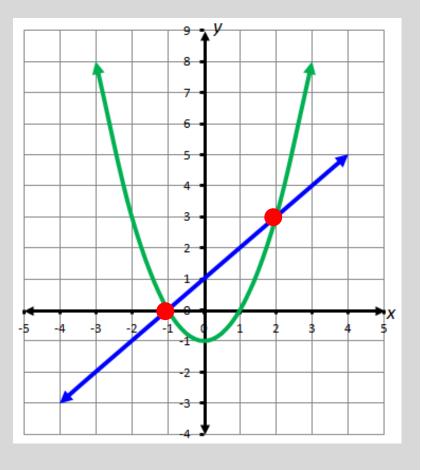
System of Linear Equations (Number of Solutions)

Number of Solutions	Slopes and y-intercepts	Graph
One solution	Different slopes	y
No solution	Same slope and different - intercepts	y x
Infinitely many solutions	Same slope and same y-intercepts	y x

System of Equations (Linear – Quadratic)

$$\begin{cases} y = x + 1 \\ y = x^2 - 1 \end{cases}$$

The solutions, (-1,0) and (2,3), are the only ordered pairs that satisfy both equations (the points of intersection).



Graphing Linear Inequalities

Example	Graph
<i>y</i> ≤ <i>x</i> + 2	3 y 4 3 2 3 4 X
y > -x - 1	-4 -3 -2 -1 2 3 X

The graph of the solution of a linear inequality is a half-plane bounded by the graph of its related linear equation. Points on the boundary are included unless the inequality contains only < or >.

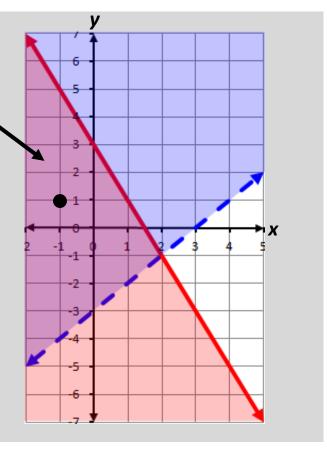
System of Linear Inequalities

Solve by graphing:

$$\begin{cases} y > x - 3 \\ y \le -2x + 3 \end{cases}$$

The solution region contains all ordered pairs that are solutions to both inequalities in the system.

(-1,1) is <u>one</u> solution to the system located in the solution region.



Dependent and Independent Variable

x, independent variable(input values or domain set)

y, dependent variable(output values or range set)

Example:

$$y = 2x + 7$$

Dependent and Independent Variable (Application)

Determine the distance a car will travel going 55 mph.

$$d = 55h$$

independent

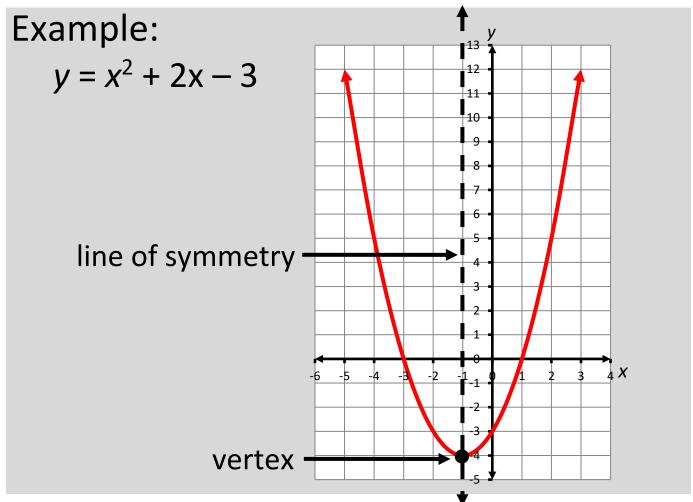
h	d
0	0
1	55
2	110
3	165

dependent

Graph of a Quadratic Equation

$$y = ax^2 + bx + c$$

 $a \neq 0$



The graph of the quadratic equation is a curve (parabola) with one line of symmetry and one vertex.

Vertex of a Quadratic Function

For a given quadratic $y = ax^2 + bx + c$, the vertex (h, k) is found by computing $h = \frac{-b}{2a}$ and then evaluating y at h to find k.

Example:
$$y = x^2 + 2x - 8$$

$$h = \frac{-b}{2a} = \frac{-2}{2(1)} = -1$$

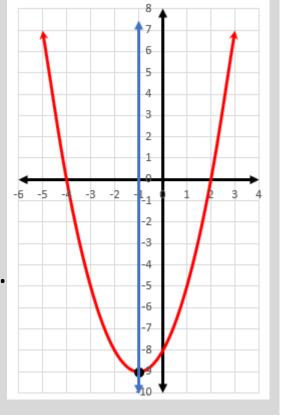
$$k = (-1)^2 + 2(-1) - 8$$

= -9

The vertex is (-1,-9).

Line of symmetry is x = h.

$$x = -1$$



Quadratic Formula

Used to find the solutions to any quadratic equation of the form,

$$f(x) = ax^2 + bx + c$$

$$X = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Example:
$$g(x) = 2x^2 - 4x - 3$$

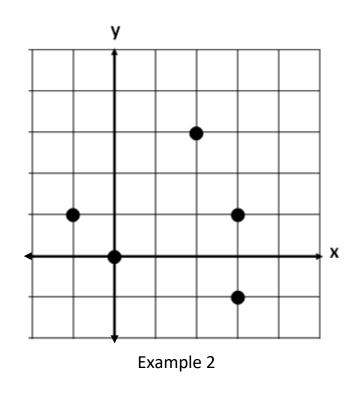
$$x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(2)(-3)}}{2(2)}$$
$$x = \frac{2 + \sqrt{10}}{2}, \frac{2 - \sqrt{10}}{2}$$

Relation

A set of ordered pairs

Examples:

X	У
-3	4
0	0
1	-6
2	2
5	-1



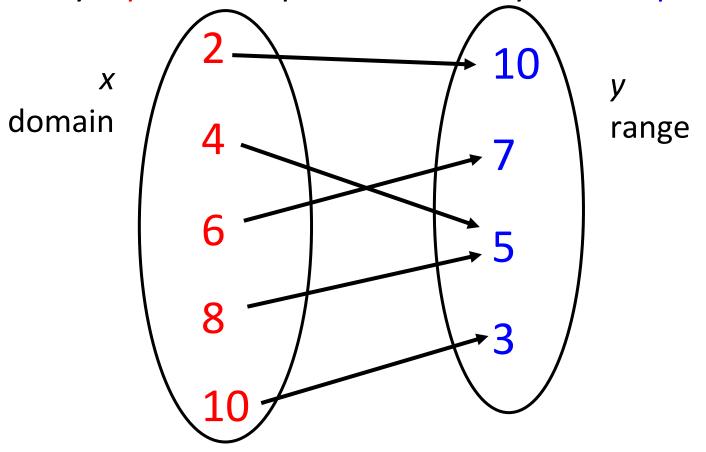
Example 1

 $\{(0,4), (0,3), (0,2), (0,1)\}$

Example 3

Function (Definition)

A relationship between two quantities in which every input corresponds to exactly one output



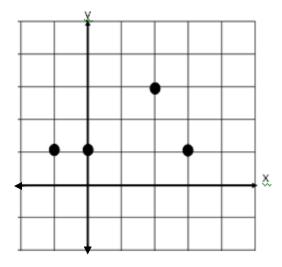
A relation is a function if and only if each element in the domain is paired with a unique element of the range.

Functions

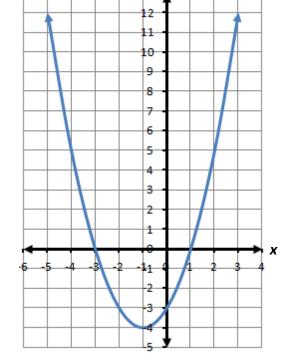
(Examples)

X	у
3	2
2	4
0	2
-1	2

Example 1



Example 2



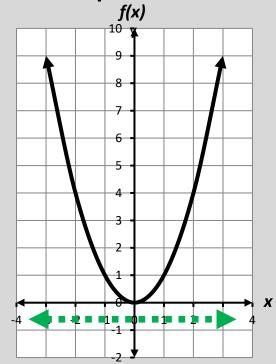
Example 4

 $\{(-3,4), (0,3), (1,2), (4,6)\}$

Domain

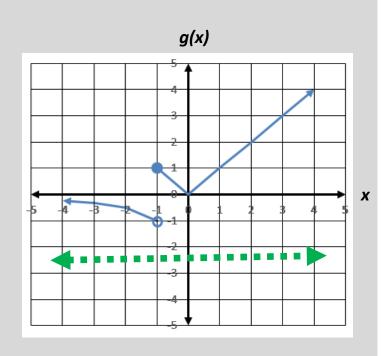
the set of all possible values of the independent variable

Examples:



$$f(x) = x^2$$

The **domain** of $f(x)$ is **all real numbers**.

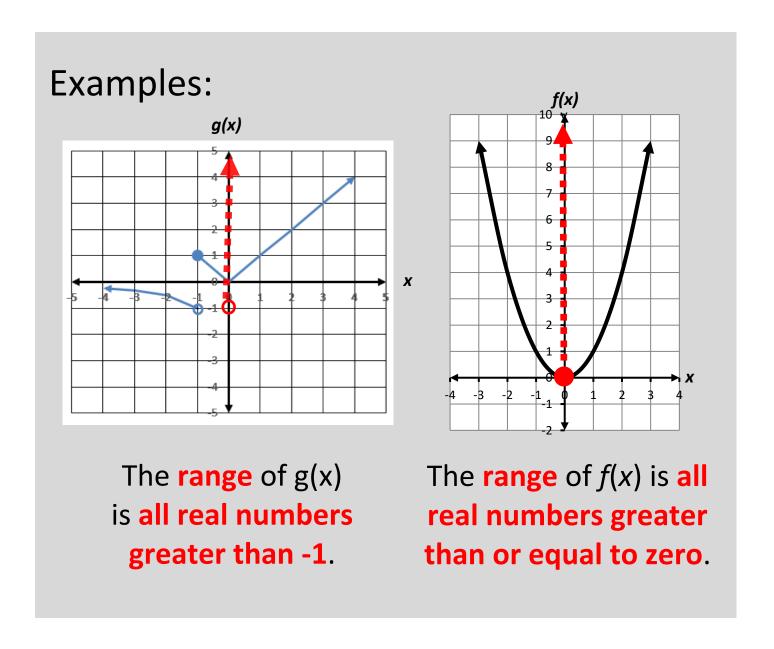


$$g(x) = \begin{cases} \frac{1}{x} & \text{if } x < -1 \\ |x| & \text{if } x \ge -1 \end{cases}$$

The **domain** of g(x) is all real numbers.

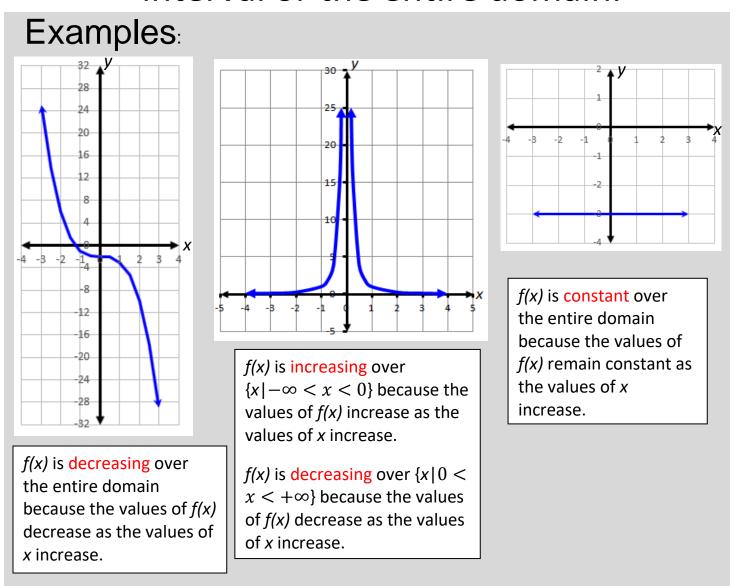
Range

the set of all possible values of the dependent variable



Increasing/ Decreasing

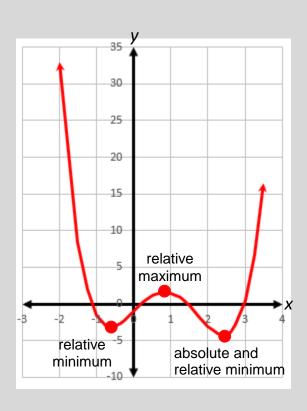
A function can be described as increasing, decreasing, or constant over a specified interval or the entire domain.



Extrema

The largest (maximum) and smallest (minimum) value of a function, either within a given open interval (the relative or local extrema) or on the entire domain of a function (the absolute or global extrema)

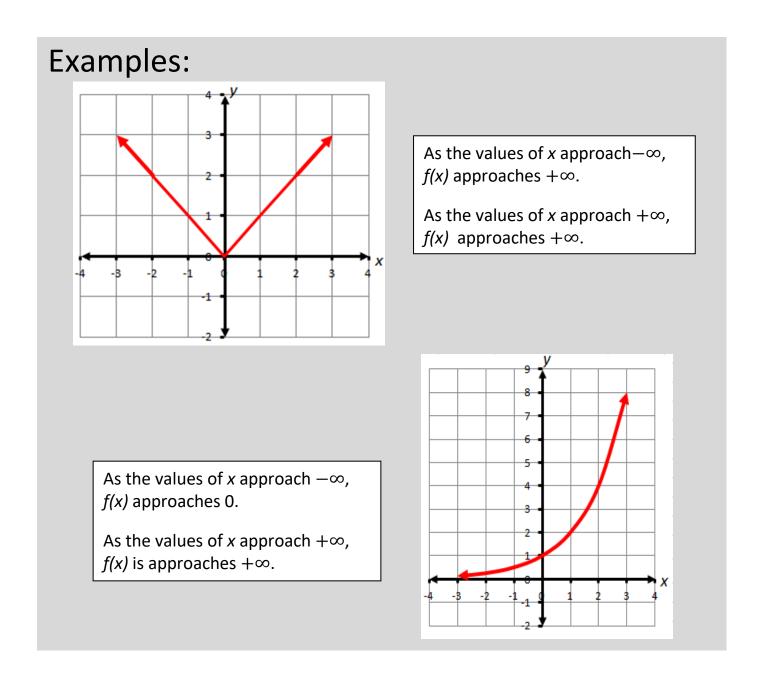
Example:



- A function, f, has an absolute maximum located at x = a if f(a) is the largest value of f over its domain.
- A function, f, has a relative maximum located at x = a over some open interval of the domain if f(a) is the largest value of f on the interval.
- A function, f, has an absolute minimum located at x = a if f(a) is the smallest value of f over its domain.
- A function, f, has a relative minimum located at x = a over some open interval of the domain if f(a) is the smallest value of f on the interval.

End Behavior

The value of a function as x approaches positive or negative infinity



Function Notation

f(x) is read "the value of f at x" or "f of x"

Example:

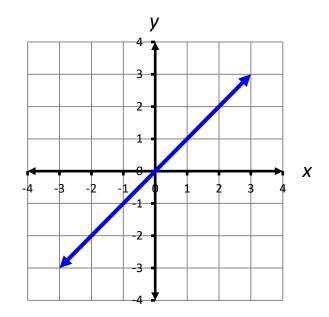
$$f(x) = -3x + 5$$
, find $f(2)$.
 $f(2) = -3(2) + 5$
 $f(2) = -6 + 5$
 $f(2) = -1$

Letters other than f can be used to name functions, e.g., g(x) and h(x)

(Linear, Quadratic)

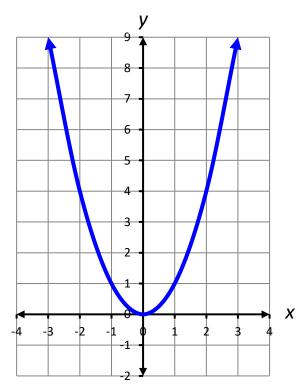
Linear

$$f(x) = x$$



Quadratic

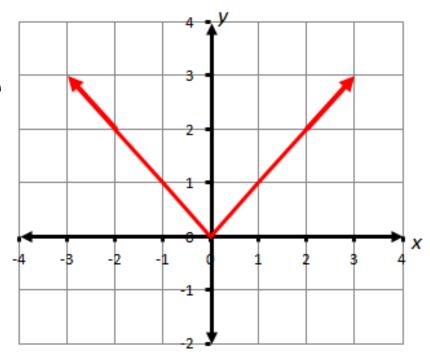
$$f(x)=x^2$$



(Absolute Value, Square Root)

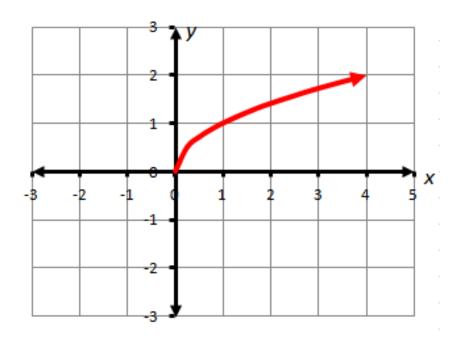
Absolute Value

$$f(x) = |x|$$



Square Root

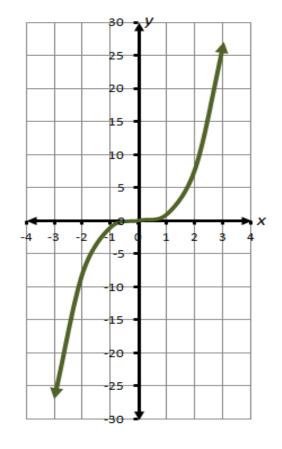
$$f(x)=\sqrt{x}$$



(Cubic, Cube Root)

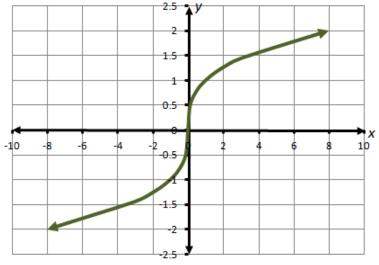
Cubic

$$f(x) = x^3$$



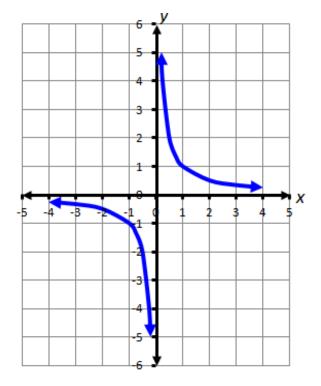
Cube Root

$$f(x) = \sqrt[3]{x}$$

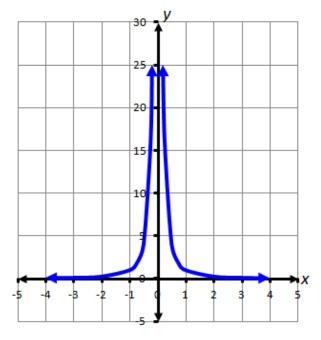


(Rational)

$$f(x)=\frac{1}{x}$$



$$f(x)=\frac{1}{x^2}$$

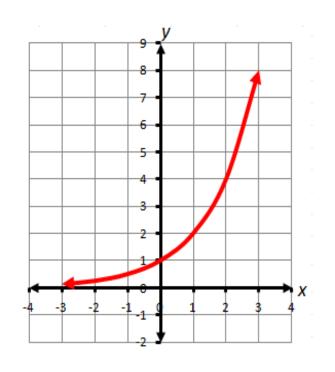


(Exponential, Logarithmic)

Exponential

$$f(x) = b^x$$

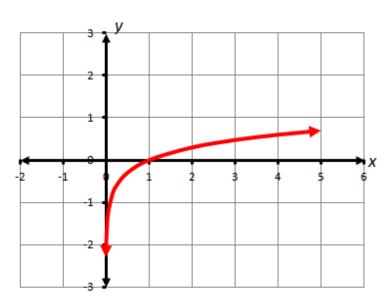
b > 1



Logarithmic

$$f(x) = \log_b x$$

$$b > 1$$



Transformations of Parent Functions (Translation)

Parent functions can be transformed to create other members in a family of graphs.

Translations

g(x) = f(x) + k is the graph of f(x) translated vertically –

k units down when k < 0.

k units up when k > 0.

g(x) = f(x - h)
is the graph of
f(x) translated
horizontally -

h units right when h > 0.

h units left when h < 0.

Transformations of Parent Functions (Reflection)

Parent functions can be transformed to create other members in a family of graphs.

Reflections

$$g(x) = -f(x)$$

is the graph of $f(x)$ –

reflected over the x-axis.

$$g(x) = f(-x)$$

is the graph of $f(x)$ –

reflected over the y-axis.

Transformations of Parent Functions (Dilations)

Parent functions can be transformed to create other members in a family of graphs.

Jilations

$$g(x) = a \cdot f(x)$$

is the graph of $f(x)$ —

$$g(x) = f(ax)$$

is the graph of
 $f(x)$ –

vertical dilation (stretch) if a > 1. STRETCHES AWAY from X-AXIS

vertical dilation (compression) if 0 < a < 1. COMPRESSES TOWARD the X-AXIS

horizontal dilation (compression) if $\alpha > 1$.

horizontal dilation (stretch) if 0 < a < 1. STRETCHES AWAY FROM the Y-AXIS

Linear Function

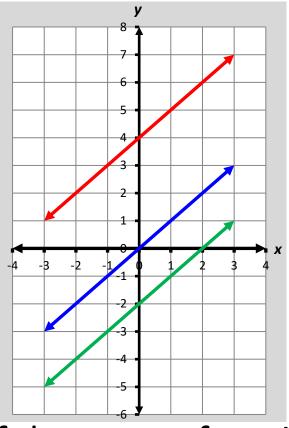
(Transformational Graphing)

Translation

$$g(x) = x + b$$

Examples:

$$f(x) = x$$
$$t(x) = x + 4$$
$$h(x) = x - 2$$



Vertical translation of the parent function,

$$f(x) = x$$

Linear Function

(Transformational Graphing)

Vertical Dilation (*m*>0)

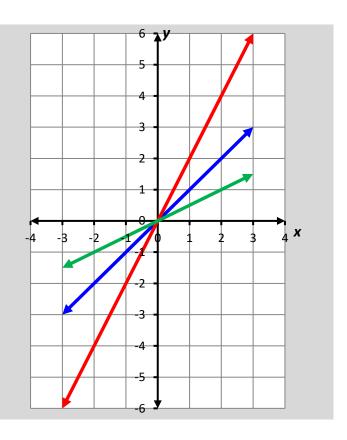
$$g(x) = mx$$

Examples:

$$f(x) = x$$

$$t(x) = 2x$$

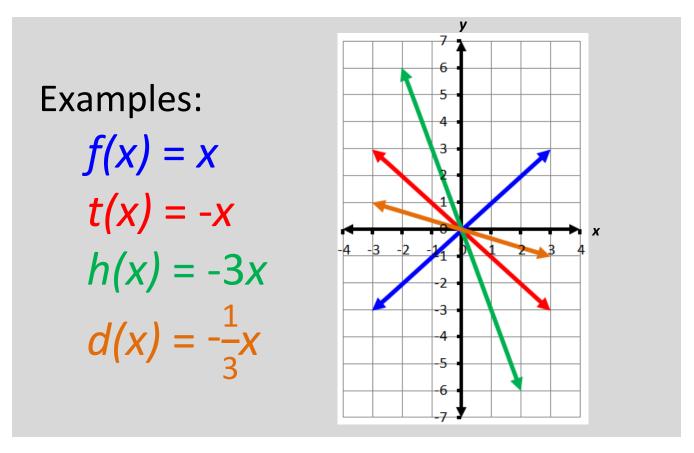
$$h(x) = \frac{1}{2}x$$



Vertical dilation (stretch or compression) of the parent function, f(x) = x

Linear Function

(Transformational Graphing) **Vertical Dilation/Reflection** (m<0) q(x) = mx



Vertical dilation (stretch or compression) with a reflection of f(x) = x

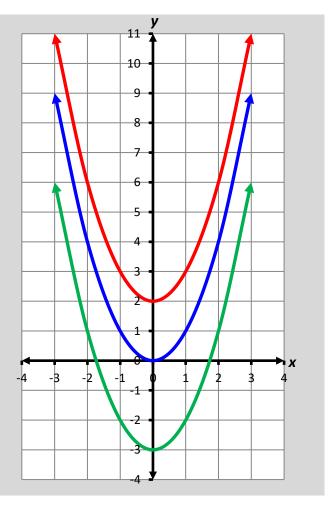
(Transformational Graphing)

Vertical Translation

$$h(x) = x^2 + c$$

Examples:

$$f(x) = x2$$
$$g(x) = x2 + 2$$
$$t(x) = x2 - 3$$



Vertical translation of $f(x) = x^2$

(Transformational Graphing)

Vertical Dilation (a>0)

$$f(x) = x^2$$
$$g(x) = a \cdot f(x)$$

Examples:

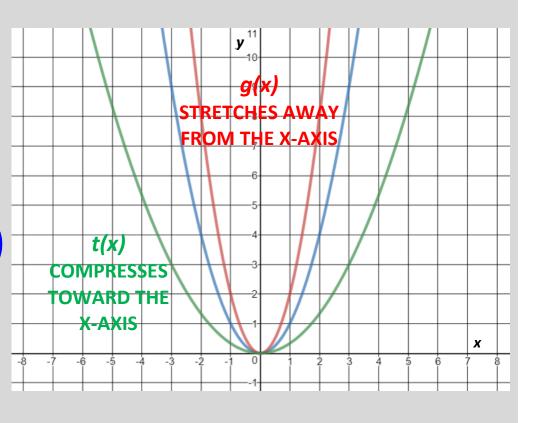
$$f(x) = x^{2}$$

$$g(x) = 2 \cdot f(x)$$

$$g(x) = 2x^{2}$$

$$t(x) = \frac{1}{3} \cdot f(x)$$

$$t(x) = \frac{1}{3}x^{2}$$



Vertical dilation (stretch or compression) of

$$f(x) = x^2$$

(Transformational Graphing)

Horizontal Dilation (a>0)

$$f(x) = x^2$$
$$g(x) = f(b \cdot x)$$

Examples:

$$f(x) = x^{2}$$

$$h(x) = f(2 \cdot x)$$

$$h(x) = (2x)^{2} = 4x^{2}$$

$$r(x) = f(\frac{1}{2} \cdot x)$$

$$r(x) = \left(\frac{1}{2}x\right)^{2} = \frac{1}{4}x^{2}$$

Horizontal dilation (stretch or compression)

of
$$f(x) = x^2$$

(Transformational Graphing) **Vertical Dilation/Reflection** (a<0)

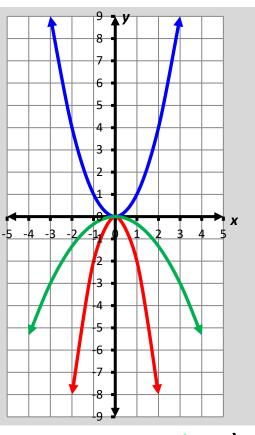
$$h(x) = ax^2$$

Examples:

$$f(x) = x^2$$

$$g(x) = -2x^2$$

$$t(x)=-\frac{1}{3}x^2$$

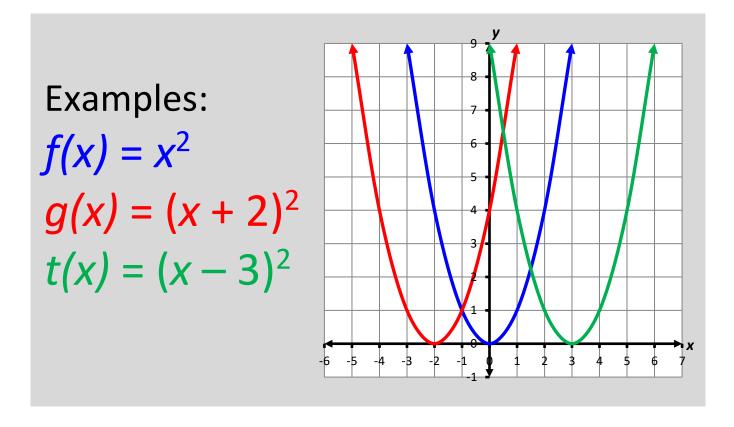


Vertical dilation (stretch or compression) with a reflection of $f(x) = x^2$

(Transformational Graphing)

Horizontal Translation

$$h(x) = (x+c)^2$$

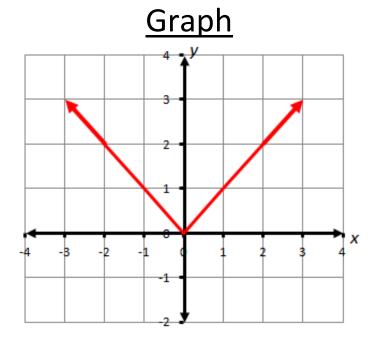


Horizontal translation of $f(x) = x^2$

Multiple Representations of Functions

$$\frac{\text{Equation}}{y = |x|}$$

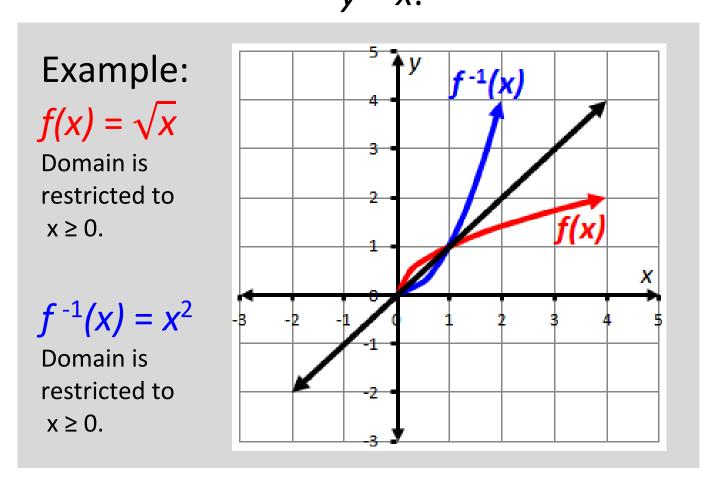
<u>Table</u>		
χ	y	
-2	2	
-1	1	
0	0	
1	1	
2	2	



Words y equals the absolute value of x

Inverse of a Function

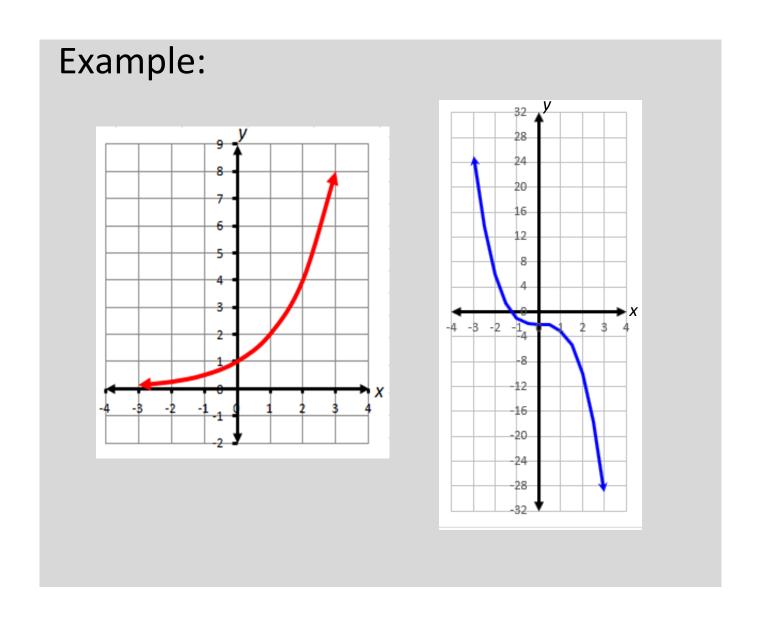
The graph of an inverse function is the reflection of the original graph over the line, y = x.



Restrictions on the domain may be necessary to ensure the inverse relation is also a function.

Continuity

a function that is continous at every point in its domain



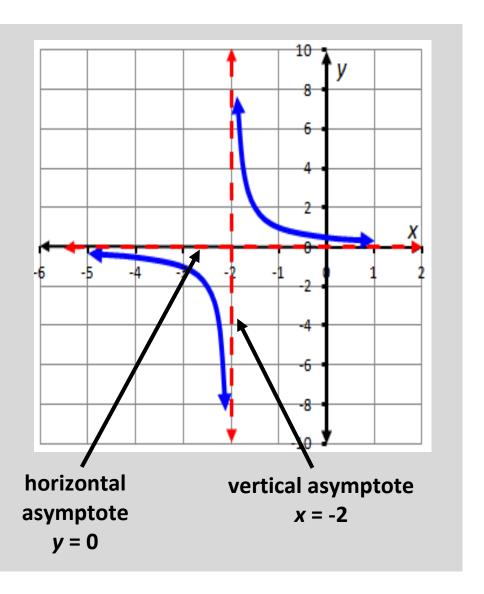
Discontinuity

(e.g., asymptotes)

Example:

$$f(x)=\frac{1}{x+2}$$

f(-2) is not defined, so f(x) is discontinuous.



Discontinuity

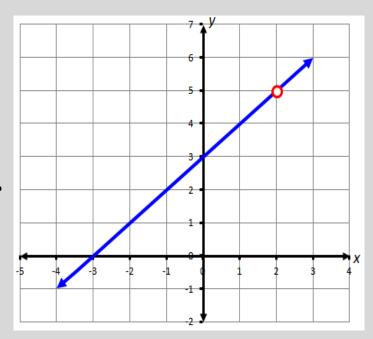
(e.g., removable or point)

Example:

$$f(x) = \frac{x^2 + x - 6}{x - 2}$$

f(2) is not defined.

X	f(x)
-3	0
-2	1
-1	2
0	3
1	4
2	error
3	6



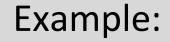
$$f(x) = \frac{x^2 + x - 6}{x - 2}$$

$$= \frac{(x + 3)(x - 2)}{x - 2}$$

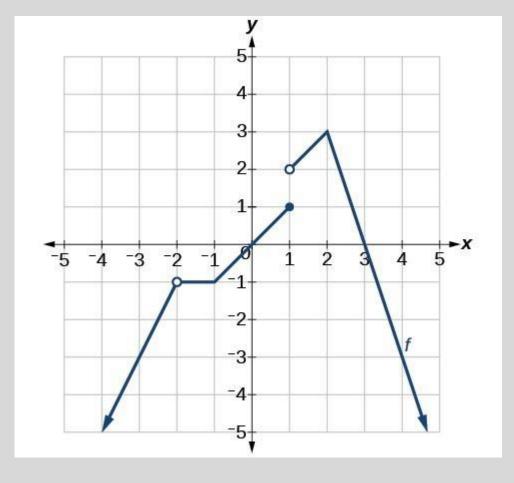
$$= x + 3, x \neq 2$$

Discontinuity

(e.g., removable or point)



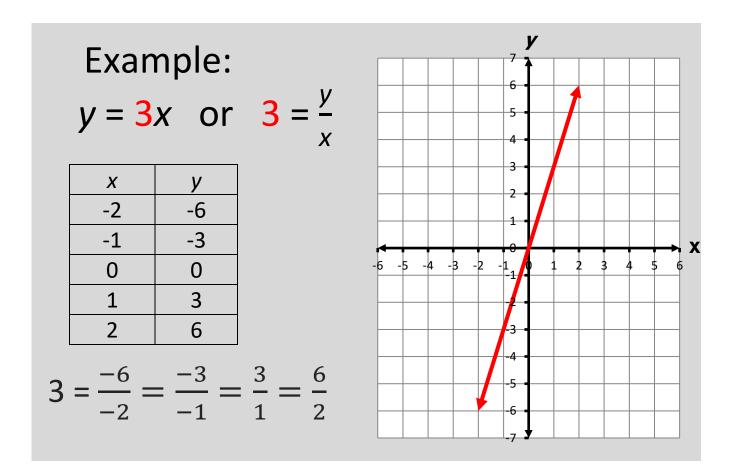
f(-2) is not defined



Direct Variation

$$y = kx$$
 or $k = \frac{y}{x}$

constant of variation, $k \neq 0$

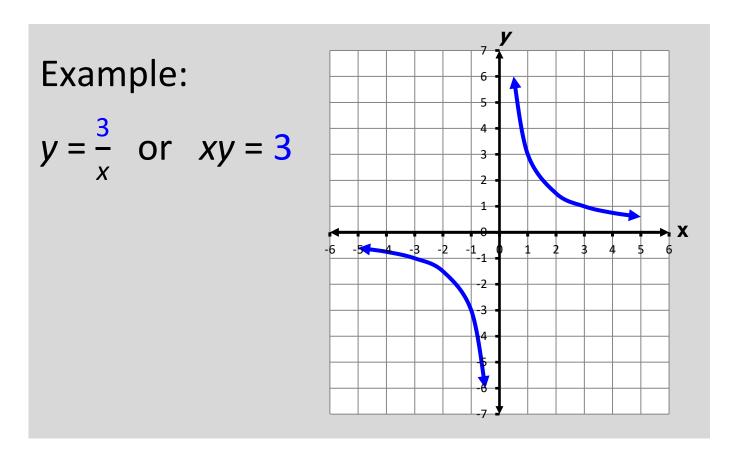


The graph of all points describing a direct variation is a line passing through the origin.

Inverse Variation

$$y = \frac{k}{x}$$
 or $k = xy$

constant of variation, $k \neq 0$



The graph of all points describing an inverse variation relationship are two curves that are reflections of each other.

Joint Variation

$$z = kxy$$
 or $k = \frac{z}{xy}$

constant of variation, $k \neq 0$

Examples:

Area of a triangle varies jointly as its length of the base, b, and its height, h.

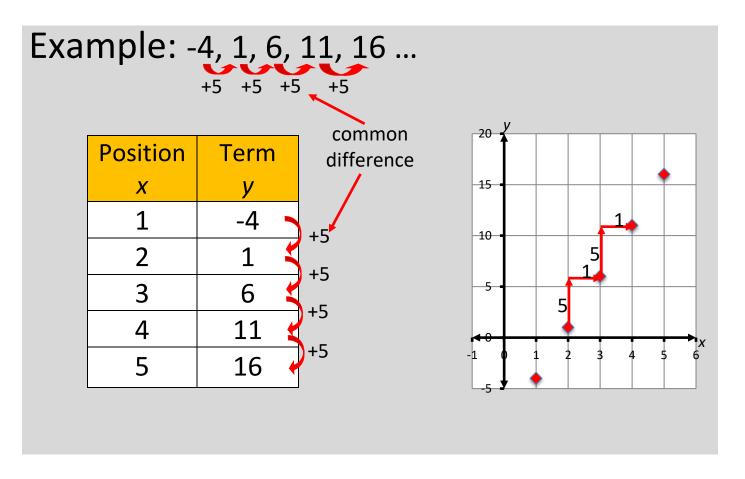
$$A = \frac{1}{2}bh$$

For Company ABC, the shipping cost in dollars, C, for a package varies jointly as its weight, w, and size, s.

$$C = 2.47ws$$

Arithmetic Sequence

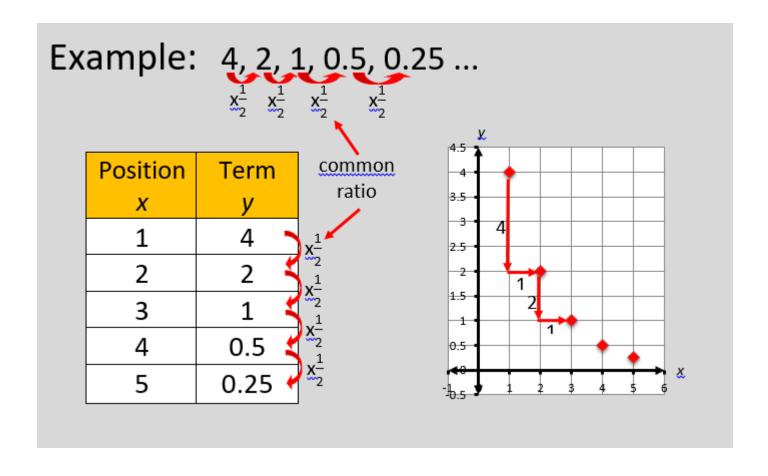
A sequence of numbers that has a common difference between every two consecutive terms



The common difference is the slope of the line of best fit.

Geometric Sequence

A sequence of numbers in which each term after the first term is obtained by multiplying the previous term by a constant ratio



Fundamental Counting Principle

If there are m ways for one event to occur and n ways for a second event to occur, then there are $m \cdot n$ ways for both events to occur.

Example:

How many outfits can Joey make using 3 pairs of pants and 4 shirts?

 $3 \cdot 4 = 12$ outfits

Permutation

An ordered arrangement of a group of objects

Both arrangements are included in possible outcomes.

Example:

5 people to fill 3 chairs (**order matters**). How many ways can the chairs be filled?

1st chair – 5 people to choose from

2nd chair – 4 people to choose from

3rd chair – 3 people to choose from

possible arrangements are 5 · 4 · 3 = 60

Permutation (Formula)

To calculate the number of permutations

$$n^P r = \frac{n!}{(n-r)!}$$

n and *r* are positive integers, $n \ge r$, and *n* is the total number of elements in the set and *r* is the number to be ordered.

Example: There are 30 cars in a car race. The first-, second-, and third-place finishers win a prize. How many different arrangements (order matters) of the first three positions are possible?

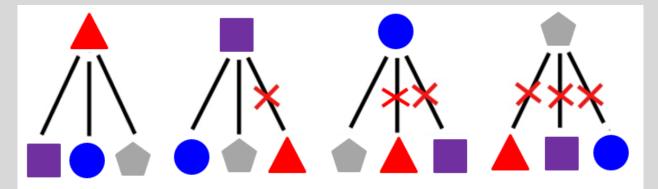
$$_{30}P_3 = \frac{30!}{(30-3)!} = \frac{30!}{27!} = 24360$$

Combination

The number of possible ways to select or arrange objects when there is no repetition and **order does not matter**

Example: If Sam chooses 2 selections from triangle, square, circle and pentagon. How many different combinations are possible?

Order (position) does not matter so is the same as



There are 6 possible combinations.

Combination (Formula)

To calculate the number of possible combinations using a formula

$$n^C r = \frac{n!}{r!(n-r)!}$$

n and r are positive integers, $n \ge r$, and n is the total number of elements in the set and r is the number to be ordered.

Example: In a class of 24 students, how many ways can a group of 4 students be arranged (order does not matter)?

$$_{24}C_4 = \frac{24!}{4!(24-4)!} = 10,626$$

Statistics Notation

Symbol	Representation
x_i	i^{th} element in a data set
μ	mean of the data set
σ^2	variance of the data set
σ	standard deviation of the data set
n	number of elements in the data set

Mean

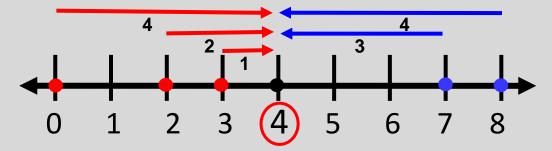
A measure of central tendency

Example:

Find the mean of the given data set.

Data set: 0, 2, 3, 7, 8

Balance Point



Numerical Average

$$\mu = \frac{0+2+3+7+8}{5} = \frac{20}{5} = 4$$

Median

A measure of central tendency

Examples:

Find the median of the given data sets.

Data set: 6, 7, 8, 9, 9

The median is 8.

Data set: 5, 6, 8, 9, 11, 12

The median is 8.5.

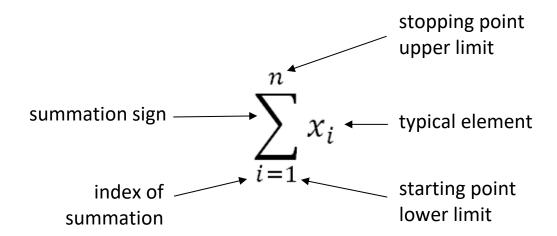
Mode

A measure of central tendency

Examples:

Data Sets	Mode
3, 4, 6, 6, 6, 6, 10, 11, 14	6
0, 3, 4, 5, 6, 7, 9, 10	none
5.2 , 5.2 , 5.2 , 5.6, 5.8, 5.9, 6.0	5.2
1, 1, 2, 5, 6, 7, 7, 9, 11, 12	1, 7 bimodal

Summation



This expression means sum the values of x_n , starting at x_1 and ending at x_n .

$$\sum_{i=1}^{n} x_i = x_1 + x_2 + x_3 + \dots + x_n$$

Example: Given the data set {3, 4, 5, 5, 10, 17}

$$\sum_{i=1}^{6} x_i = 3 + 4 + 5 + 5 + 10 + 17 = 44$$

Variance

A measure of the spread of a data set

$$variance(\sigma^2) = \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}$$

The mean of the squares of the differences between each element and the mean of the data set

Note: The square root of the variance is equal to the standard deviation.

Standard Deviation (Definition)

A measure of the spread of a data set

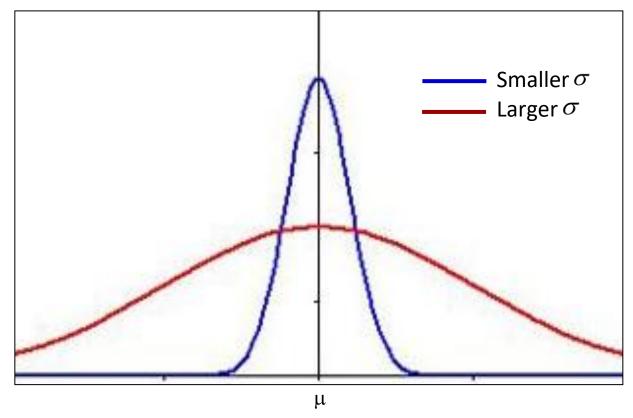
standard deviation (
$$\sigma$$
) = $\sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}}$

The square root of the mean of the squares of the differences between each element and the mean of the data set or the square root of the variance

Standard Deviation (Graphic)

A measure of the spread of a data set

standard deviation (
$$\sigma$$
) = $\sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}}$



Comparison of two distributions with same mean (μ) and different standard deviation (σ) values

z-Score (Definition)

The number of standard deviations an element is away from the mean

z-score (z)
$$=\frac{x-\mu}{\sigma}$$

where x is an element of the data set, μ is the mean of the data set, and σ is the standard deviation of the data set.

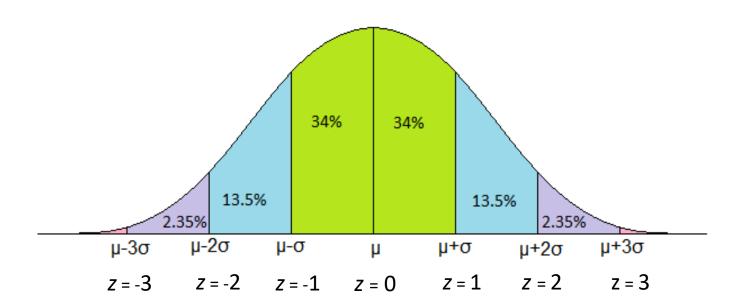
Example: Data set A has a mean of 83 and a standard deviation of 9.74. What is the z-score for the element 91 in data set A?

$$z = \frac{91-83}{9.74} = 0.821$$

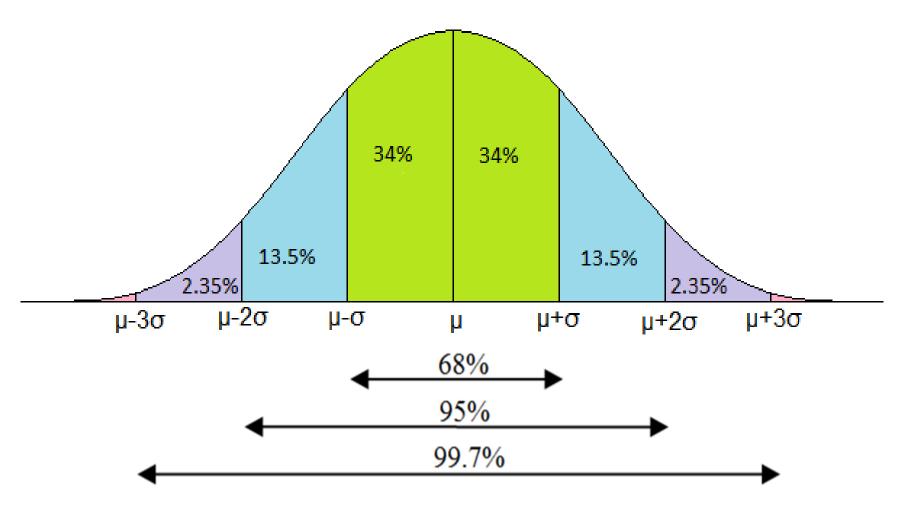
z-Score (Graphic)

The number of standard deviations an element is from the mean

z-score (z)
$$=\frac{x-\mu}{\sigma}$$

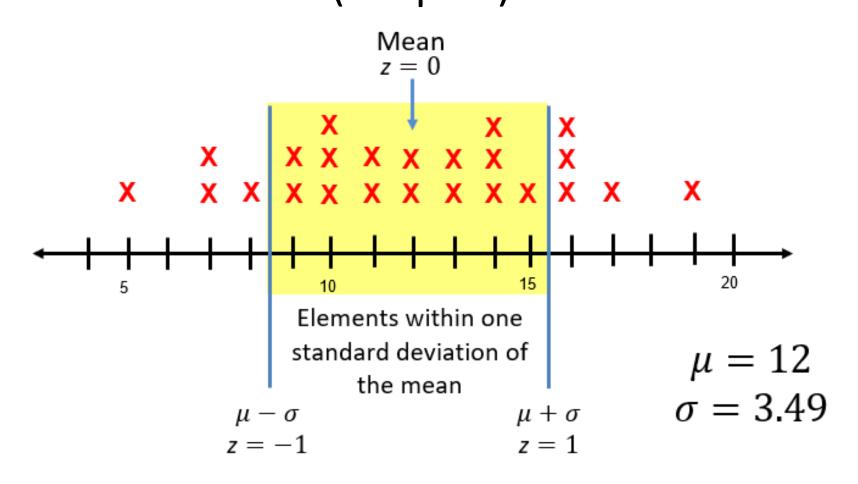


Empirical Rule



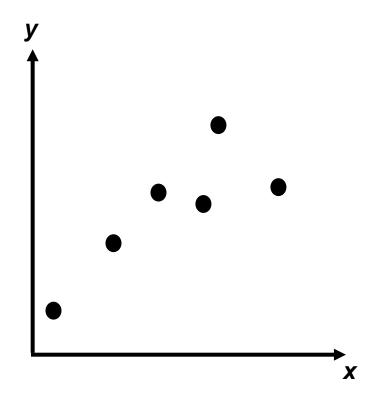
Normal Distribution Empirical Rule (68-95-99.7 rule)— approximate percentage of element distribution

Elements within One Standard Deviation (σ) of the Mean (μ) (Graphic)



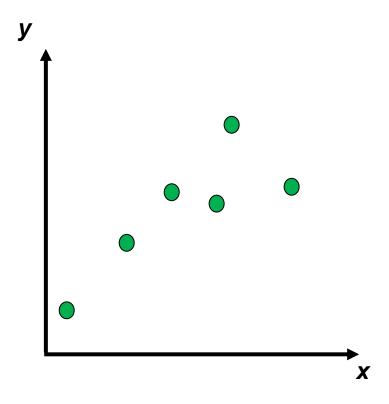
Scatterplot

Graphical representation of the relationship between two numerical sets of data



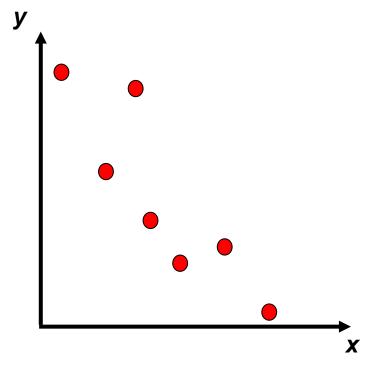
Positive Linear Relationship (Correlation)

In general, a relationship where the dependent (y) values increase as independent values (x) increase



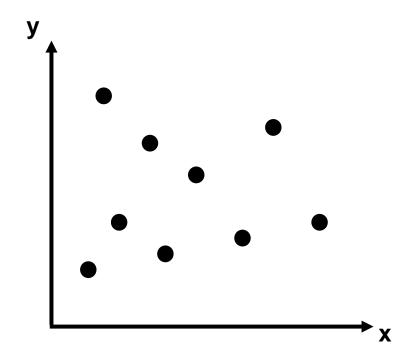
Negative Linear Relationship (Correlation)

In general, a relationship where the dependent (y) values decrease as independent (x) values increase.



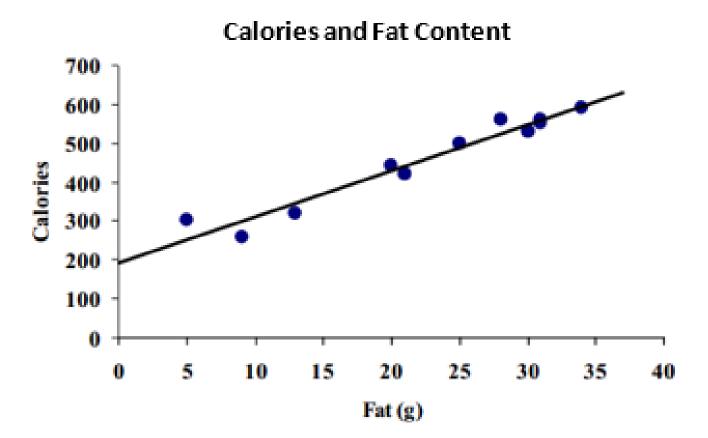
No Correlation

No relationship between the dependent (y) values and independent (x) values.



Curve of Best Fit

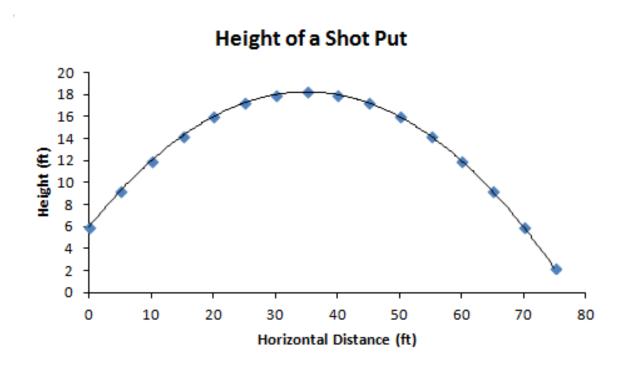
(Linear)



Equation of Curve of Best Fit y = 11.731x + 193.85

Curve of Best Fit

(Quadratic)



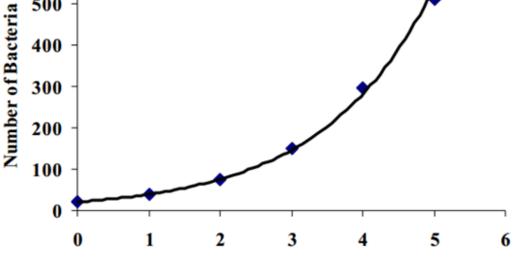
Equation of Curve of Best Fit

$$y = -0.01x^2 + 0.7x + 6$$

Curve of Best Fit

(Exponential)

Bacteria Growth Over Time



Equation of Curve of Best Fit $y = 20.512(1.923)^x$

Hours

Outlier Data (Graphic)

