Slope and y-intercept

Strand: Patterns, Functions, and Algebra

Topic: Recognize and describe the graph of a linear function.

Primary SOL: 8.16 The student will

 a) recognize and describe the graph of a linear function with a slope that is positive, negative, or zero;

b) identify the slope and *y*-intercept of a linear function given a table of values, a graph, or an equation in

y = mx + b form;

Related SOL: 6.12, 7.10, 8.15

Materials

- Teacher-made slope foldable
- Scissors
- Slope-Intercept Cards (attached)
- Silent Bingo Game Card (attached)
- Graph paper (optional)

Vocabulary

coordinate plane (earlier grades)

dependent variable, equation of a line, linear function, negative slope, positive slope, rate of change, slope, y-intercept (8.16a, 8.16b)

Student/Teacher Actions: What should students be doing? What should teachers be doing?

- Create a tab foldable with the class. The tabs should display definition, positive slope, negative slope, zero slope, and no slope. Go through the foldable and explain each concept: positive slope, negative slope, zero slope, and no slope.
- 2. Give each student a pair of scissors and the Slope-Intercept Cards. Have students cut the cards apart and match the cards to make sets of five cards each—equation in standard form, equation in slope-intercept form, *m* (slope), *b* (*y*-intercept), and graph.
- 3. Distribute copies of the Bingo Game Card. Have students play the Bingo game individually. As the teacher calls out a number for slope or a number for *y*-intercept, students will put a mark beside that equation. Tell them they can only check one equation at a time. Whenever a student gets "Bingo," check his/her game card.

Assessment

Questions

- Write whether a slope is positive, negative, zero, or undefined.
- Write the slope and y-intercept of a graph.
- Write the slope and y-intercept of a table of values.

• Write the slope and *y*-intercept of an equation.

Journal/Writing Prompts

- Write the formula for a linear function, and identify and describe what m and b stand for. Create an example in your explanation.
- Write about lines with undefined slope (vertical lines) and compare undefined slope to lines with a defined slope.
- \circ Explain why the graph of a horizontal line does not have an x-intercept, assuming the equation is not x = 0. Describe how you know this.
- \circ Explain why the graph of a vertical line does not have a *y*-intercept, assuming the equation is not y = 0. Describe how you know this.

Other

- Have students create a design on graph paper using 10 straight lines. Have them give the design to a partner, who will determine the slope and y-intercept of each line.
- o Graph a linear function, given an equation using different methods.

Strategies for Differentiation

- Encourage the use of graph paper and dry-erase boards with grids for students to see the slope and intercepts.
- Laminate the *Slope-Intercept Cards* so students can write on the cards with dry-erase markers.
- Have students work in pairs for both activities, as needed.

Note: The following pages are intended for classroom use for students as a visual aid to learning.

Virginia Department of Education © 2018

Slope-Intercept Cards

Copy on card stock and cut out.

$$y = -3x - 1$$

$$m = -3$$

$$b = -1$$

$$y=-\frac{3}{4}x+2$$

$$m = -\frac{3}{4}$$

$$b = 2$$

$$y=2x-4$$

$$m = 2$$

$$b = -4$$

$$y=\frac{1}{2}x-3$$

$$m=\frac{1}{2}$$

$$b = -3$$

$$y = 2x$$

$$m = 2$$

$$b = 0$$

$$y = 4$$

$$m = 0$$

$$b = 4$$

$$y = -x + 4$$

$$m = -1$$

$$b = 4$$

$$y=\frac{2}{3}x+1$$

$$m=\frac{2}{3}$$

Silent Bingo Game Card

В		N	G	0
y = 2x + 1	$y = \frac{1}{3}x + 3$	$y = \frac{1}{2}x - 1$	x = 8	y = 3x - 5
$y = \frac{1}{2}x + 4$	$y = -\frac{1}{3}x$	y = -5x + 11	y = -x - 2	x = 2
y = 3x + 2	y = -2x + 9	Free Space	y = 4	y = -2x + 3
$y = \frac{1}{2}x + 6$	$y = -\frac{1}{3}x + 1$	y = -2x + 1	$y = -\frac{3}{2}x + 3$	y = 6x - 8
y = -3	y = 2	y = 4x + 2	$y = \frac{1}{2}x + 1$	y = 3x