I Am a Problem Solver!

Strand: Computation and Estimation

Topic: \quad Single step and two-step practical problems involving addition and subtraction

Primary SOL:

Related SOL: $\quad 2.5 \mathrm{a}, \mathrm{b} ; 2.6 \mathrm{a}, \mathrm{b}$

Materials

2.6 The student will

c) create and solve single step and two-step practical problems involving addition and subtraction.

- Counting cubes
- Chart paper
- Markers
- Rubric for Poster Problem (attached)
- Joining or Separating activity sheet (attached)

Vocabulary

addition, single-step problem, subtraction, two-step problem

COMMON ADDITION AND SUBTRACTION PROBLEM TYPES		
Join (Result Unknown)	Join (Change Unknown)	Join (Start Unknown)
Sue had 28 pencils. Alex gave her 14 more pencils. How many pencils does Sue have altogether?	Sue had 28 pencils. Alex gave her some more. Now Sue has 42 pencils. How many did Alex give her?	Sue had some pencils. Alex gave her 14 more. Now Sue has 42 pencils. How many pencils did Sue have to start with?
Separate (Result Unknown)	Separate	
(Change Unknown)		

Student/Teacher Actions: What should students be doing? What should teachers be doing?

1. Use counting cubes to model the six different problem types for addition and subtraction (see Common Addition and Subtraction Problem Types).
2. After each problem type has been taught, have students get in pairs and then divide the class in half. Half of the students will work on joining problems, and the other half will work on separating problems.
3. Students will be given chart paper and markers and will need to create and solve singlestep or two-step practical problems involving addition and subtraction.
4. On the chart paper, students should have the following: (See the Rubric for Poster Problem)

- State the problem.
- Create a picture of what the problem is doing (the action).
- Write a number sentence that corresponds to the problem.

5. After each pair has completed their problem with the listed criteria, have students discuss what type of action was happening in their problem and find others in the room who used the same problem type.
6. Finally, create a chart with the problems from the students' papers to talk about the action in each and to discuss the missing part.
7. Relate these problems to reading in making the connection that word problems are like a story. There is a beginning, a middle, and an end. Ask students what part is missing in each problem type. (Students do not have to name the type but rather explain what the action is in the problem.)

Assessment

- Questions
- Teachers can relate these problems to reading in making the connection that word problems are like a story. There is a beginning, a middle, and an end. Ask the students what part is missing in each problem type. (Students do not have to name the type but rather explain what the action is in the problem.)
- What is the difference between the two problems?
- Why did Student A think about his problem as joining and Student B think about his problem as separating when they have the same numbers?
- Journal writing prompts (include a minimum of two)
- Given the two problems below:
- What is the difference in the two problems?
- How would you solve each?
- How would you turn the problem into a subtraction problem?

Sue had 28 pencils. Alex gave her 14 more pencils. How many pencils does Sue have altogether?

Sue had 28 pencils. Alex gave her some more. Now Sue has 42 pencils. How many did Alex give her?

- Other Assessments (include informal assessment ideas)
- Give students six problems based on the problem types and ask them to explain how to solve for each in their own words.
- Create problems based on the six problem types and have students solve the problems.

Extensions and Connections (for all students)

- Use the attached matching game for rotations to match by how the problems were solved, either joining or separating.

Strategies for Differentiation

- Use only two matching game pieces and have students draw out their thinking with pictures and number sentences.
- Use game pieces and ask students to create a different problem that matches each type.
- Provide counters, if needed.
- Redirection and corrective feedback should be given throughout lesson.

Note: The following pages are intended for classroom use for students as a visual aid to learning.

Virginia Department of Education ©2018

Rubric for Poster Problem

Name	Yes	No
Neat and Organized	Yes	No
Poster Criteria	10 points	
State the problem	Points Earned	
Create a picture of what the problem is doing (the action)	10 points	
Write a number sentence that corresponds to the problem		
Student Reflection:		
Teacher Feedback:		

Joining or Separating

Joining Problems	Separating Problems

Joining Problems		Separating Problems	

Mark had 15 toy cars. Alex gave him14 more toy cars. How many toy cars does Mark have altogether?	Vince had some candy. Shawn gave him 15 more pieces. Now Vince has 31 pieces of candy. How many pieces of candy did Vince have to start with?	Sue had some pencils. Alex gave her 14 more. Now Sue has 42 pencils. How many pencils did Sue have to start with?	Shelly had 28 pencils. Alex gave her some more. Now Shelly has 42 pencils. How many did Alex give her?
John had 35 marbles. He gave 19 marbles to Luis. How many marbles does John have now?	Lisa had 22 beads. She gave some to Tim. She has 16 beads left. How many beads did she give to Tim?	Brooke had some marbles. She gave Joe 19 marbles. Now she has 16 marbles left. How many marbles did Brooke start with?	Lisa purchased 22 toy rings. She gave some to Ann. She has 16 toy rings left. How many toy rings did she give to Ann?

