Baseball and Normal Distribution

Strand:	Data Analysis
Topic:	Normal Distribution
Primary SOL:	AFDA. $7 \quad$ The student will

a) identify and describe properties of a normal distribution;
b) interpret and compare z-scores for normally distributed data; and
c) apply properties of normal distributions to determine probabilities associated with areas under the standard normal curve.

Related SOL: AFDA. 6

Materials

- Baseball Payroll activity sheet (attached)
- Graphing utility or spreadsheet software

Vocabulary

curve, standard deviation, mean, normal distribution, percentile, probability, z-score

Student/Teacher Actions

Time: 90 minutes

1. Begin by displaying examples of normal distribution curves (such as heights of adults, IQ scores, SAT scores).
2. Distribute the Baseball Payroll activity sheet. Group students into pairs or fours while completing the activity. Students will need to use a graphing utility or spreadsheet software to compute z-scores, mean, and standard deviation.
3. After students complete the z-score chart, discuss percentages between the standard deviation ranges before having students complete questions 6 through 10 on the activity sheet.

Assessment

- Questions
- What does a z-score with a large positive value, large negative value, or zero describe for a data point?
- What do we know about a data set that has a small standard deviation compared with a data set with a large standard deviation?
- Journal/writing prompts
- Describe how a data set with a large mean but small standard deviation would compare with a data set with a small mean but large standard deviation. Describe with the context of data sets of income.
- Describe how a data set of incomes of people in the same career would compare with a data set of incomes of people in different careers as it relates to mean and standard deviation.
- Other Assessments
- Give students multiple graphs of standard distributions and have them determine which sets have larger standard deviations, larger means, etc.
- Create an exit slip on which students need to calculate the mean, standard deviation, and z -scores for a data set including 10 or fewer data points.

Extensions and Connections

- Have students research general admission ticket prices for the different Major League Baseball (MLB) teams and compare those to the teams' payroll using z-scores.
- Have students compare the mean, standard deviation, and z-scores between other professional sports leagues. Have students compare why some sports may have higher total payrolls and how we could equally compare the leagues.

Strategies for Differentiation

- Split students into the baseball leagues (National and American) and have them find the mean, standard deviation, and z-scores for one league. Have students compare leagues as a whole class.
- Use vocabulary cards for related vocabulary listed above.
- Have students create histograms of the team payrolls to better visualize the differences in salary.

Note: The following pages are intended for classroom use for students as a visual aid to learning.

Baseball Payroll

Using the 2017 total team payroll and records for each team in Major League Baseball (MLB) on the table on the next page:

1. Use a spreadsheet or graphing utility to find the mean and standard deviation for the payroll data, as well as the z-score for each team.
2. Are there any teams whose payroll is more than two standard deviations away from the mean?
3. Some people say that it is not fair for the Yankees to pay so much and the Rays to pay so little in salaries. Do you think it is fair? If you do think it is fair, explain why. If not, how could you make it fairer? What could Major League Baseball do to try to maintain equity in competition?
4. Find the mean and standard deviation for the number of wins data and z-score for each team. How do the z-scores from that data set compare to the payroll z-scores? Does a team that pays more in salary lead to more wins in a season? Explain your reasoning.
5. Look at the data and determine which team seemed to get the best return on their payroll investment. Justify your answer.

Baseball 2017 Payroll and Wins Data Table

Data from Spotrac.com and Baseball-Reference.com				
Team	Payroll	z-score	Wins	z-score
New York Yankees	\$224,458,752		84	
Boston Red Sox	\$222,552,008		93	
New York Mets	\$154,829,658		87	
Los Angeles Angels	\$176,337,209		74	
Chicago White Sox	\$99,889,688		78	
Los Angeles Dodgers	\$265,149,292		91	
Seattle Mariners	\$171,255,830		86	
Chicago Cubs	\$182,400,336		103	
Detroit Tigers	\$198,716,188		86	
Baltimore Orioles	\$182,523,427		89	
St. Louis Cardinals	\$149,454,185		86	
San Francisco Giants	\$191,065,209		87	
Philadelphia Phillies	\$116,874,208		71	
Houston Astros	\$149,964,163		84	
Atlanta Braves	\$115,455,675		68	
Toronto Blue Jays	\$199,430,487		89	
Oakland Athletics	\$85,977,680		69	
Minnesota Twins	\$138,629,177		59	
Milwaukee Brewers	\$83,488,679		73	
Cincinnati Reds	\$115,323,803		68	
Texas Rangers	\$185,899,040		95	
Kansas City Royals	\$158,275,155		81	
Cleveland Indians	\$139,165,884		94	
San Diego Padres	\$91,963,878		68	
Colorado Rockies	\$146,651,941		75	
Arizona Diamondbacks	\$119,898,775		69	
Pittsburgh Pirates	\$109,840,330		78	
Washington Nationals	\$189,292,654		95	
Miami Marlins	\$117,557,599		79	
Tampa Bay Rays	\$92,491,605		68	
	Mean Standard Deviation		Mean Standard Deviation	

6. What happens to the z-score of other teams if the New York Yankees are removed from the data set for payroll? Additionally, what happens when the Boston Red Sox are removed?
7. Using the z-scores obtained in this activity, what do you notice about the z-scores for payroll and wins?
8. What percentage of teams falls below the mean total team payroll? What percentage falls above?
9. Calculate the team payroll that would equate to a z-score of one and minus one. What percentage of teams would fall between these values?
10. What is the probability that a team chosen randomly would have a total team payroll greater than one standard deviation above the mean?
