Quadratic Connections

Strand:	Functions
Торіс:	Relating the roots (zeros) of a quadratic equation and the graph of the equation
Primary SOL:	 A.7 The student will investigate and analyze linear and quadratic function families and their characteristics both algebraically and graphically, including c) zeros; d) intercepts;
Related SOL:	A.2c, A.4b

Materials

- Graphing calculators
- Quadratic Connections activity sheet (attached)

Vocabulary

factor, quadratic equation, root of a function, x-intercept, zeros of a function

Student/Teacher Actions: What should students be doing? What should teachers be doing?

- 1. Distribute the Quadratic Connections activity sheet.
- 2. Direct students to work in pairs to complete the table on the first page of the activity and investigate the relationships between the various pieces of information.
- 3. The partners should then continue to the second page and respond to questions 4 through 9 together.
- 4. When students have finished this part of the activity, hold a class discussion about the information in the table and the associated questions.
- 5. Have pairs of students continue and complete the table on the last page of the activity.
- 6. Encourage each pair to check their work with a graphing calculator to verify the accuracy of their answers.

Assessment

- Questions
 - If you know the *x*-intercepts of a quadratic graph, how do you use that information to write the factors of the equation?
 - \circ How do you use the factors to write the equation of the quadratic?
- Journal/writing prompts
 - Explain the relationship between the more general function $y = x^2 8x + 15$ and the specific equation $x^2 - 8x + 15 = 0$. Include in your explanation how the graph of the function can help you factor and solve the equation.

- Some quadratic equations have one solution, while others have no solution.
 What do you think the graphs of the functions associated with these equations might look like? Explain your reasoning.
- Other Assessments
 - Students could be provided with a sorting activity where they are asked to match the graph of a quadratic function with its *x*-intercepts, zeros, an equation with the same factors used to create the function, and a solution set for the equation.
 - Students can determine two points on the graph of the function

 $y = x^2 + 10x + 21$ by factoring the equation $x^2 + 10x + 21 = 0$.

Extensions and Connections

- Provide students with the graph of a cubic function and ask them to determine an equation for the function.
- Connect this content with that of solving a system of equations, because we are looking for the points of intersection between the quadratic function and the line y = 0.

Strategies for Differentiation

- Encourage the use of graph paper or individual dry-erase boards with grids for students to make connections between the graphing technology and the content.
- Have students complete 1-3 with their partner, and use 4-9 in small-group instruction led by teacher.
- Use a graphic organizer to help find what the sum "b" and product of "ac" are in a quadratic expression in the form $ax^2 + bx + c$.
- Cut the first page of Quadratic Connections activity into strips to isolate each problem.
- Have students complete each column first before moving on to the next column for 1-3.

Note: The following pages are intended for classroom use for students as a visual aid to learning.

Virginia Department of Education © 2018

Quadratic Connections

For each quadratic equation below,

- a. Rewrite the quadratic equation in factored form.
- b. Use a graphing calculator and its table function to help you sketch the graph of the function with the same polynomial expression set equal to *y* instead of 0.
- c. List the *x*-intercepts seen on the graph.

Quadratic Equation	a. Factored Form	b. Graph	c. x -intercepts
Example: $x^{2} + x - 2 = 0$	(x-1)(x+2) = 0	$y = x^2 + x - 2$	(-2, 0) and (1, 0)
1. $x^2 + x - 6 = 0$		-8 -7 -6 -5 -4 -3 -2 -1 -2 -1 -3 -2 -1 -2 -1 -2 -3 -2 -4 -2 -5 -3 -4 -5 -5 -6 -6 -7 -8 -7	
2. $x^2 - 5x + 4 = 0$			
3. $x^2 + 4x + 3 = 0$		-0 -7 -7 -1 -6 -7 -3 -2 -7 -1 -2 -7 -0 -7 -6 -5 -1 -2 -7 -3 -2 -1 -2 -3 -2 -3 -2 -3 -4 -5 -5 -5 -6 -7 -8 -8 -7	

Mathematics Instructional Plan – Algebra I

- 4. Describe where you find the *x*-intercepts of a graph.
- 5. The *x*-intercepts for the graph of y = x² + x 2 are located at (-2, 0) and (1, 0).
 a) What do *all* coordinate pairs for an *x*-intercept have in common?
- 6. What relationship do you notice between the factors you created in part *a* of the table on the previous page and the *x*-intercepts that you recorded in part *c*?

 Use the relationship that you described in question 6 to predict what quadratic function (in factored form) was used to create the graph to the right.

8. Why is the *x*-coordinate of an *x*-intercept also referred as a zero of the function?

9. How do the zeros of a function relate to the solution set for the quadratic equation that, when set equal to zero, has a polynomial expression that matches that of the function?

Mathematics Instructional Plan – Algebra I

Use your knowledge of the relationships between *x*-intercepts, zeros, factors, and solution sets to complete the table below.

Graph	<i>x</i> -intercepts	Zeros of the function	Quadratic Equation (in factored form) that may prompt you to look at the graph provided	Solution Set for the equation
Example:	(–2, 0) and (4, 0)	-2 and 4	(x+2)(x-4) = 0	{-2, 4}

Note: You may want to use your graphing calculator to verify that the equation you recorded in the fourth column produces the graph pictured in the first column.