Transformation Investigation

Strand: Equations and Inequalities

Topic: Investing the components of the equation of a line

Primary SOL:
A. 6 The student will
c) graph linear equations in two variables.

Related SOL: A.6a, A.7d

Materials

- Graphing utilities
- Graph paper
- Optional Transformation Investigation Student Activity Sheet

Vocabulary

transformation, translation, reflection, slope, slope-intercept form, y-intercept (earlier grades)
x-intercept(A.6)
parent function, function families (A.7)

Student/Teacher Actions: What should students be doing? What should teachers be doing?

Note: In this activity, students will graph linear equations of the form $y=m x+b$ and investigate transformations in the parent function $y=x$ as m and b change.

1. Distribute graph paper. On their graphing utilities, have students use an x-axis labeled from -10 to 10 and a y-axis labeled from -6 to 6 . Ask students to sketch a graph of the parent function $y=x$. Inform students that the parent function will be used to make comparisons and generalizations throughout this investigation, so they may want to graph it on a separate sheet of graph paper and keep it to the side.
2. Have students sketch a graph for each of the following equations
$y_{1}=x+1$
$y_{2}=x+4$
$y_{3}=x-1$
$y_{4}=x-3$

Direct students to record data in a table, such as the one below, and answer the following questions:

- What effect does changing b have on the parent function $y=x$?
- What generalizations can you make about the transformation seen when you change the y-intercept of a function?

	y	y_{1}	y_{2}	y_{3}	y_{4}
y-intercept					
Slope					

3. Have students sketch a graph for each of the following equations:
$y_{1}=2 x$
$y_{2}=\frac{1}{2} x$
$y_{3}=-5 x$
$y_{4}=-\frac{2}{3} x$

Direct students to record data in a table and then answer the following questions:

- Compare the data for $y_{1}, y_{2}, y_{3}, y_{4}$ to the data for the parent function. What effect(s) does changing the slope have on the parent function?
- What generalizations can you make about the transformation seen in a graph when you change the slope of a function?

4. Students should become familiar with describing the transformations of linear functions. The following (adapted from the 2016 VDOE Algebra I Vocabulary Word Wall Cards) generalize these transformations:

Linear Function

(Transformational Graphing)
Translation
$g(x)=x+b$

Examples:
$f(x)=x$
$t(x)=x+4$
$h(x)=x-2$

Vertical translation of the parent function, $f(x)=x$

Linear Function

(Transformational Graphing) Vertical Dilation ($m>0$)

$$
g(x)=m x
$$

Examples:
$f(x)=x$
$t(x)=2 x$
$h(x)=\frac{1}{2} x$

Vertical dilation (stretch or compression) of the parent function, $f(x)=x$

Linear Function

(Transformational Graphing)
Vertical Dilation/Reflection ($m<0$)

$$
g(x)=m x
$$

Examples:

$$
f(x)=x
$$

$$
t(x)=-x
$$

$$
h(x)=-3 x
$$

$$
d(x)=-\frac{1}{3} x
$$

Vertical dilation (stretch or compression)
with a reflection of $f(x)=x$
5. Have students sketch a graph for each of the following equations. You can use a graphing utility such as https://www.desmos.com/calculator to graph linear equations. Students and teachers can find out more about graphing using the Desmos graphing calculator at http://learn.desmos.com/graphing.
$y_{1}=2 x$
$y_{3}=-2 x$
$y_{2}=\frac{2}{5} x$
$y_{4}=-\frac{2}{5} x$

Direct students to record data in a table and then answer the following questions:

- What generalizations can you make about the transformation seen when you graph functions with opposite slopes?

Assessment

- Questions
- When the slope of a line is +1 , what is the result of changing the y-intercept?
- When the slope (m) of a line is greater than 1 , what is the effect on the parent function $y=x$?
- When the slope of a line is less than 1 but greater than zero, what is the effect on the parent function $y=x$?
- When the slope of a line is -1 , what transformation is seen in relation to the parent function $y=x$?
- Journal/Writing Prompts
- Compare and contrast the behaviors of the functions $y=x-2$ and $y=-2 x$ in relation to $y=x$.
- Extensions and Connections (for all students)
- Ask students how the graph of the parent function, $y=x$, would be transformed when graphing the function $y=-x+2$.

Strategies for Differentiation

- Review vocabulary taught at earlier grades, if needed.
- Encourage the use of graphing calculators, graph paper, or dry-erase boards with a grid for students to see the transformations.
- Use a demonstration tool (e.g., document camera or digital display) to illustrate procedures in the graphing utility.
- Use different colors for the parent functions and comparison functions.
- Provide steps to follow if students are using a graphing utility.
- Provide copies of the table for students to use for recording information from each set of functions.
- Have students answer all generalization questions individually, in small groups, or in a large group, depending on the needs of the students.
- Have students work in groups of four, with each student graphing a separate function. Then, students can come together as a group to make comparisons between their graphs and the graph of the parent function.

Note: The following pages are intended for classroom use for students as a visual aid to learning.

Virginia Department of Education © 2018
\qquad
\qquad

Transformation Investigation - Activity Sheet

1. Sketch a graph for $y=x$. (consider using a regular black lead pencil)
2. Sketch a graph for each of the following equations - use the graphs attached and tables with each graph. (consider using different colored pencils to create each graph)

$$
y_{1}=x+1 \quad y_{2}=x+4 \quad y_{3}=x-1 \quad y_{4}=x-3
$$

3. Complete the table below with the y-intercept and slopes for each equation.

	y	y_{1}	y_{2}	y_{3}	y_{4}
\boldsymbol{y}-intercept					
Slope					

- What effect does changing b have on the parent function $y=x$?
\qquad
- What generalizations can you make about the transformation seen when you change the y-intercept of a function?
\qquad
\qquad

4. Sketch a graph for each of the following equations (consider using different colored pencils) - use the graphs and attached tables:

$$
y_{1}=2 x \quad y_{2}=\frac{1}{2} x \quad y_{3}=-5 x \quad y_{4}=-\frac{2}{3} x
$$

Record data in the table and then answer the following questions:

	y	y_{1}	y_{2}	y_{3}	y_{4}
\boldsymbol{y}-intercept					
Slope					

- Compare the data for $y_{1}, y_{2}, y_{3}, y_{4}$ to the data for the parent function. What effect(s) does changing the slope have on the parent function?
- What generalizations can you make about the transformation seen in a graph when you change the slope of a function?

Mathematics Instructional Plan - Algebra I

6. Sketch a graph for each of the following equations. Go to www.desmos.com/testing to graph each linear equation. We will do this together... First graph $y=x$, then:
$y_{1}=2 x$
$y_{3}=-2 x$
$y_{2}=\frac{2}{5} x$
$y_{4}=-\frac{2}{5} x$

Record data in a table and then answer the following questions:

	y	y_{1}	y_{2}	y_{3}	y_{4}
\boldsymbol{y}-intercept					
Slope					

- What generalizations can you make about the transformation created when you graph two functions with opposite slopes?

Assessment

- Questions
- When the slope of a line is +1 , what is the result of changing the y-intercept?
- When the slope (m) of a line is greater than 1 , what is the effect on the parent function $y=x$?
- When the slope of a line is less than 1 but greater than zero, what is the effect on the parent function $y=x$?
- When the slope of a line is -1 , what transformation is seen in relation to the parent function $y=x$?
\qquad
- Compare and contrast the behaviors of the functions $y=x-2$ and $y=-2 x$ in relation to $y=x$.
\qquad
- How would the graph of the parent function, $y=x$, be transformed when graphing the function $y=-x+2$.

Mathematics Instructional Plan - Algebra I

\mathbf{x}	\mathbf{y}

\mathbf{x}	\mathbf{y}

\mathbf{x}	\mathbf{y}

\mathbf{x}	\mathbf{y}

\mathbf{x}	\mathbf{y}

\mathbf{x}	\mathbf{y}

Mathematics Instructional Plan - Algebra I
Use this graph for sketching the parent function, $f(x)=x$ or $y=x$.

											410									
											9									
											8									
											7									
											- 6									
											5									
											4									
											3									
											2									
											1									
-10	-9	-8	. 7	-6	6	-5	-4	-3	-2	-1	1	2	3	4	5	6	7	8	9	10
											-1									
											-2									
											-3									
											-4									
											-5									
											${ }^{-6}$									
											-7									
											${ }^{-8}$									
											-9									
											F-10									

\mathbf{x}	y

